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ABSTRACT: We introduce ForceBalance, a method and free software
package for systematic force field optimization with the ability to parametrize a
wide variety of functional forms using flexible combinations of reference data.
We outline several important challenges in force field development and how
they are addressed in ForceBalance, and present an example calculation where
these methods are applied to develop a highly accurate polarizable water
model. ForceBalance is available for free download at https://simtk.org/
home/forcebalance.

1. INTRODUCTION

Molecular mechanics (MM) using empirical potentials (force
fields) is the simulation method of choice for large-scale
atomistic systems. Compared to quantum mechanical (QM)
calculations, they are computationally far more efficient.
Nevertheless, the reliability of MM simulations depends
crucially upon the accurate modeling of the essential physical
interactions, which in turn is predicated on having accurate
parameters.
Historically, force fields were parametrized by fitting to

experimental data. Early examples include interatomic repulsion
potentials determined from experimental second virial co-
efficients,1 the CFF potential for organic molecules based on
experimental geometries and vibrational spectra,2 and the
TIP3P and TIP4P water models,3 which were fitted to the
room-temperature density and enthalpy of vaporization of
liquid water. More recent examples include the parametrization
of protein dihedral potentials to reproduce experimentally
observed conformations from NMR measurements.4−7 On the
other hand, the requirement of large amounts of data for a
complete parametrization effort has led to the widespread use
of QM data in force field development, either directly from
potential energies8,9 and forces10−15 or from calculated
observables such as vibrational spectra or electrostatic
potentials.16−18 Force fields developed from fitting QM
energies and forces have found applications in modeling
biomolecular conformation energies,19 liquid water,11,20 and
materials such as aluminum,10 iron,21 and silica;22 electrostatic
potential fitting is commonly applied in general force fields
such as GAFF.23

The main challenge in force field development is to choose
functional forms that are computationally efficient, yet flexible
enough to capture the relevant physical interactions in the
thermodynamically accessible regions of phase space. An
accurate fit of the parameters is also crucial, which necessitates

the use of accurate and abundant fitting data from experimental
measurements or from QM calculations. Efficient and strictly
regularized optimization methods are needed to search the
high-dimensional parameter space without overfitting. We have
developed an open source software package called Force-
Balance24 that aids in these development and parametrization
efforts, which we expect to accelerate the exploration of new
force fields and design protocols.
In this article, we briefly review the challenges associated with

force field development and parametrization and how some of
these issues are alleviated by using ForceBalance. We then
illustrate its use by developing a new polarizable water model
with 27 adjustable parameters, including five fluctuating charge
sites and an improved functional form for the van der Waals
interactions. We validate this new model by comparison with
experimental measurements of various properties.

2. THEORY

2.1. Objective Function. Force field parametrization is
essentially an optimization problem in the space of parameters
(denoted using k). As described above, the reference data may
come from experimental measurements or from QM
calculations, and just about any physical quantity can be used
in the fitting procedure. To accommodate the diverse choices
possible in the fitting procedure, we allow for multiple types of
residuals X to be included in a single objective function χ2,
which is then integrated over the entire configuration space
of N atoms with some suitable measure P(r;k) dr reflecting the
thermodynamic ensemble of interest. The integral may be
evaluated using any sampling technique, such as molecular
dynamics or Metropolis Monte Carlo.
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Specializing for now on QM reference calculations of
energies and forces, our objective function is defined in eq 1a:
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where ΔE and ΔF represent the energy and force residuals, k is
the set of force field parameters, and Cov(FQM) is the
covariance of the reference QM forces. The energy variance
and force covariance introduce appropriate rescalings so that
the residuals in the objective function are dimensionless and of
unit magnitude. The average energy difference is subtracted out
of the energy term, so only relative energies are fitted. The
force term is further divided by the number of components so
that it has the same scale as the energy term. We introduce an
adjustable parameter w which weights the relative importance
of energy residuals (w = 1) and force residuals (w = 0). In
principle w ought to be chosen carefully for each use; for
simplicity, we choose w = 1/2 here, so that both are equally
weighted. Information beyond energies and forces is similarly
easy to include as squared residuals with appropriate dimen-
sional scaling.
2.2. Nonlinear Optimization. We use primarily the L-

BFGS algorithm to optimize the objective function, with
analytic first derivatives (with respect to parameters)
implemented in a modified GROMACS simulation code.24,25

While this procedure cannot guarantee a globally optimal fit,
we find in practice that the optimization is well-behaved, with
the best final parameter values tending to result from a
physically motivated initial guess. This is evidenced by
numerical studies where we used a force field to produce the
reference data and performed an optimization using randomly
perturbed parameter values; the optimization reliably con-
verged to the same parameters used to generate the reference
data. The stability of our optimized parameters reflects
previously reported numerical studies in the literature.12 In
addition, ForceBalance provides some global optimization
algorithms such as simulated annealing to handle more
problematic situations.
2.3. Self-Consistent Configurational Sampling. The

probability distribution P(r,k) in configurational space reflects
the thermodynamic ensemble that we work in by providing the
appropriate Boltzmann weights to each sampled point r.
However, these weights will in general differ between the
reference data and that predicted from the force field. In
previous work, we showed that a linear combination of the
Boltzmann distributions for the force field and the QM
reference provides a more consistent result than using either
distribution alone.14 We continue to adopt this approach here.
Furthermore, we enforce self-consistency between the sampling
simulations, reference QM calculations, and parameter
optimizations until self-consistency is reached after a number

of generations.13,26−28 The procedure for doing so is outlined
in Figure 1.

2.4. Reweighting of Data Samples Across Gener-
ations. Since the reference calculations are expensive, we
would like to carry over the data from previous generations to
aid the optimization process. However, it is important to keep
in mind that each batch of reference data is sampled using a
different force field and a different thermodynamic ensemble.
As the parameters k change between iterations, the measure
P(r;k) dr reflecting the configurational weights also changes
correspondingly. Naıv̈ely retaining each reference data sample
in the objective function χ2(k) would thus bias the final result
toward the initial parameters. We addressed this by using the
weighted histogram analysis method (WHAM) equations to
compute a consistent set of Boltzmann weights for all
generations.29−32 Writing the sampling explicitly as P(r;k) =
∑iwi(k)δ(r − ri), where wi are the weights from the
thermodynamic ensemble, we have at each generation G the
self-consistent WHAM weight Pi(kj) of the ith configuration as
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where each A(j) is the WHAM weight for the force field at
generation j. These are self-consistently determined from these
equations beginning from an initial ansatz of equal weights, and
the corresponding new weights Pi(kG) are used in the force field
optimization procedure.
Comparing this to the usual application of WHAMto

construct a free energy profile or probability histogram from
several simulations that differ by a restraining potentialour

Figure 1. Flowchart for self-consistent force field parametrization
showing the flow of reference data (circles) and calculations (boxes):
(1, upper left) initial parameters k, (2) sample generation using current
parameters k, (3) calculation of corresponding QM reference data, (4)
optimization of parameters by minimizing the objective function χ2,
(5) new optimized parameters k. Steps 2 through 5 are repeated until
the force field parameters are converged.
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current application retains the idea of correcting weights to
account for the different measures used to sample different
reference data points. To this extent, our present application of
WHAM is similar to the multistate Bennett acceptance ratio
method for estimating free energy differences.33

2.5. Regularization and Dimensional Rescaling of
Parameters. Overfitting is a common and onerous problem in
force field parametrization. Whenever near- or exact redun-
dancies in the parameter set k are present, optimization
algorithms often produce extreme parameter values that are
physically counterintuitive or nonsensical. To prevent this,
regularization methods are often used to restrain parameters to
physically intuitive values.12,34 A common such method is
Tikhonov regularization or ridge regression, and involves
adding a quadratic penalty to the objective function that
restrains parameters to their initial values.
A Bayesian perspective offers a useful framework for

choosing the relative scales between the quadratic penalties
for each parameter. The quadratic penalty function arises from
imposing a Gaussian prior distribution on the force field
parameters. As with the objective function in eq 1a, the
Gaussian widths for each parameter in the prior reflects the
intrinsic scale of that parameter and provides a form of
dimensional rescaling that is required to treat parameters with
different physical units on the same footing. This is important
on two counts. First, parameters in the GROMACS unit system
can vary over 6 orders of magnitude: bond lengths are on the
order of 0.1, while force constants are on the order of 105.
Second, different parameter types have different inherent
variabilities; bond lengths are expected to be correct to within
a few percent while atomic partial charges can change sign or
fluctuate by several times their initial values.
This Bayesian framework guides, but does not fully automate,

our choice of regularization parameters in practical applications.
For each parameter, the center of the prior is given by its initial
value, and the prior width is the rescaling factor specified at the
start of the optimization. For instance, we may choose the prior
width for atomic charge parameters to be one elementary
charge, and the prior width for a bond length to be 0.01 nm.
Note that the prior widths are related to the parameter’s natural
size, and also incorporate some physical intuition regarding its
inherent variability.

3. APPLICATION TO PARAMETRIZING A
POLARIZABLE WATER MODEL

To illustrate the power of ForceBalance, we use it to develop a
polarizable water model and determine its parameters
automatically. The supreme importance of water has spurred
intense interest in capturing its extraordinary properties in
various theoretical models. The most common point charge
models with three or four charge sites have several different
published parameter sets depending on the reference data and
parametrization strategy, including the TIP3P3 and SPC/E35

three-site models and the TIP4P,3 TIP4P-Ew,36 TIP4P/Ice,37

and TIP4P/200538 four-site models. Other functional forms
include a single-site multipole expansion,39 five-site and six-site
models,40,41 and models with explicit three-body interactions.42

Recent years have seen increasing interest in the need to treat
electronic polarization for more accurate force fields, and thus
also for water models;43−46 moreover, polarizable force fields
represent an important frontier for systematic parametrization
approaches because of the many-body, nonlinear nature of the

dependence of the energies and forces upon the polarization
parameters.

3.1. Functional Form. Our new water model has five
charge sites and a force field of the form

∑ ∑
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where EMorse(rij) is a Morse potential for the O−H bond
vibrations, EU−B(θijk,rik) is a Urey−Bradley potential for the
HOH angle vibration, EQTPIE({r}) is the electrostatic energy
from the QTPIE (charge transfer by polarization current
equalization) model,47−50 and EvdW(rij) is a pairwise van der
Waals interaction. The bond and angle interactions have a total
of seven adjustable parameters; the QTPIE interaction has
eight parameters and the van der Waals interaction has nine
parameters. There are three parameters that determine the
position of virtual sites. Overall, ForceBalance treats all 27
adjustable parameters on the same footing and optimizes all of
them simultaneously.

3.1.1. Intramolecular Parameters. The vibrational modes of
water can be approximated with simple functional forms owing
to the small amplitude of such motions under typical
thermodynamic parameters of interest. We chose the Morse
potential and Urey−Bradley potential to describe the bond and
angle vibrations, respectively; these have the well-known
functional forms
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We have found that accounting for some anharmonicity in the
vibrations in this way greatly improves the quality of fit for a
single water molecule when compared against other alternatives
such as harmonic bond-angle cross terms and quartic angle
potentials.

3.1.2. Fluctuating Charges. QTPIE is a type of fluctuating-
charge model51,52 that has an improved description of charge
transfer behavior.47,48 The charges qi on each atom i are
recomputed for each geometry by minimizing the fluctuating
charge energy expression
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Each fluctuating charge i has three parametersthe electro-
negativity χi, the chemical hardness ηi, and the Gaussian width
αi. This last parameter determines the amount of screening in
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the charge−charge interactions Jij and also the attenuation Sij of
the electronegativity difference between two charge sites. In this
study, all pairwise electrostatic interactions were modified to go
smoothly to zero at a cutoff distance of 1.2 nm in order to treat
periodic systems.
This minimization procedure reduces to solving a linear

saddle-point system with the block matrix form
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where Jij = Jij, i ≠ j, Jii = ηi, and K is the charge constraint
topology48 which enforces charge neutrality of individual
molecules. The desired charges are the q part of the solution.
The QTPIE model has been implemented into a development
version of the GROMACS simulation software which is freely
available on the Web.24

3.1.3. Virtual Sites. Our model contains five fluctuating
charge sites with two sites located on hydrogen nuclei, one
virtual site on the HOH angle bisector denoted “M” (similar to
the TIP4P model), and two out-of-plane virtual sites denoted
“L1” and “L2”. Their positions are determined by

= + +ar r r r( )M O M OH OH1 2 (8a)

= + + + ×a cr r r r r r( ) ( )L O L OH OH L OH OH1 1 2 1 2 (8b)

= + + − ×a cr r r r r r( ) ( )L O L OH OH L OH OH2 1 2 1 2 (8c)

Here, rOH1
and rOH2

denote the displacement vectors from the
O atom to the two H atoms; the constants aM, aL, and cL are
fitting parameters. The out-of-plane sites are needed to describe
the nearly isotropic dipole polarizability of the water molecule;
without them, the out-of-plane component of the polarizability
tensor would be zero. Figure 2 illustrates the charge sites of the

water model after all of the fluctuating charge parameters and
virtual site positions have been optimized. In the absence of an
electric field, the out-of-plane sites are nearly neutral; their main
role is to describe the polarizability tensor and not the static
charge distribution. The unconventional positions of the out-of-
plane sites are determined by the automatic parametrization
and are discussed later.
3.1.4. van der Waals Interactions. The van der Waals

(vdW) interactions in our water model are described using a
new exp−6 functional form with three parameters; we

independently parametrize the O−O, H−H, and O−H pairwise
interactions, so there are a total of nine vdW parameters.
The exp−6 form models both exchange repulsion and

dispersion effects. The repulsion is known to have an
approximately exponential form;53−57 however, the original
Buckingham exp−6 function58 has an unphysical singularity at
the origin, which causes severe problems for relatively soft
repulsive interactions. We have modified the functional form to
eliminate the singularity. The new form is given by EvdW below:
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where we have also written out the Buckingham interaction EB
for comparison. In both interactions, σ denotes the minimum
energy distance, ε is the well depth, and γ is a dimensionless
constant describing the steepness of the repulsion. The
Buckingham interaction goes to −∞ at zero separation, but
at large values of γ (>12) there is a substantial barrier that
blocks the system from reaching the singularity. However, for
softer repulsions the barrier is much lower (Figure 3a), and for

small values of γ (<8) the barrier vanishes completely. Previous
attempts to eliminate the singularity have used new functional
forms with four or more parameters or piecewise behavior.58−61

Instead, we have chosen a new vdW empirical potential with
just three parameters that nevertheless

• is analytic and nonsingular
• tends to an attractive r−6 term as r → ∞, describing

dipole−dipole dispersion
• tends to a repulsive exponential term as r → 0 describing

exchange repulsion
• has a well-defined, unique minimum
• is inexpensive to evaluate
• is highly tunable to accommodate interactions between

diverse atom types and molecule types

Furthermore, EvdW is parametrized such that σ, ε, and γ have
the same physical interpretations as in the Buckingham
potential.
Our new functional form is guaranteed to have the

qualitatively correct behavior for any choice of positive σ, ε,
and γ; it has strictly one x intercept that separates the attractive

Figure 2. 3D rendering of a model water molecule with the five
fluctuating charge sites (spheres) colored to represent their charges in
the absence of an electric field. The H atom sites are positive (blue),
the in-plane M site is negative (red), and the out-of-plane sites are
nearly neutral (gray). The virtual site positions have been fully
optimized; note their significant deviation from the “lone pair”
positions.

Figure 3. (a) A family of Buckingham potentials with fixed σ and ε
parameters with tunable γ. Note that the barrier vanishes for γ < 8. (b)
Our new van der Waals potential.
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and repulsive regions and tends to Ae−br and −Cr−6 in the r < σ
and r > σ regions (where A, b, and C are functions of σ, ε, and
γ).
Figure 3b shows that the repulsion can be tuned over several

orders of magnitude while minimally affecting the attractive
region, whereas the Buckingham interaction fails catastrophi-
cally for soft repulsions. Furthermore, the new vdW interaction
is nearly identical to the Buckingham interaction everywhere
except in the region where the Buckingham interaction
becomes unphysical. We have implemented the new vdW
interaction into our modified copy of GROMACS,24 and it has
proven to be valuable in describing the subtle vdW interactions
for hydrogen atoms in hydrogen bonds (see section 4.2).
3.2. Reference Data. The objective function included the

following QM reference data:

1. energies and forces for thermally sampled water clusters
2. dipole and quadrupole moments for an isolated water

molecule
3. dipole polarizability tensor for an isolated water molecule

In the objective function, the energy and force residuals were
rescaled according to eq 1b. The dipole, quadrupole, and
polarizability residuals were rescaled to the RMS values of each
quantity (1.85 D, 2.10 D Å, and 1.47 Å3, respectively); all data
types were given equal weight. The QM reference data were
computed with an RI-MP262,63/aug-cc-pVTZ64 model chem-
istry, with additional frozen core and dual-basis65 approx-
imations to accelerate the calculations. The QM calculations
were performed using the Q-Chem quantum chemistry
software.66

3.3. Parametrization . The water model was automatically
parametrized using a self-consistent procedure. The initial guess
for force field parameters was derived from a number of sources
including the UFF force field67 and the SPC/E,35 TIP4P,3 and
TIP5P40 water models. Where precedent was unavailable (as
was the case for fluctuating charge parameters), we guessed the
parameters and performed an initial optimization using a
simulated annealing algorithm. Table S1 in the Supporting
Information lists the starting parameters.
In each generation of the force field parameters, we first

obtained 300 samples of water dodecamer configurations by
running constant-temperature molecular dynamics and taking
snapshots at 10 ps time intervals. A shallow harmonic restraint
of 0.5 kJ mol−1 nm−2 was applied to prevent the trajectories
from diverging; this was sufficiently weak to still include
samples with one molecule dissociated from the rest of the
cluster. We set the prior widths (rescaling factors) by rescaling
the parameters within a given type using their geometric mean.
Seventeen self-consistency iterations, using 5100 total cluster

configurations, were needed for the parameters to be converged
to within 1%; further convergence was not possible due to
statistical fluctuations and linear dependency issues. We also
performed a multicluster fit where we included six sets of
clusters with different sizes (1800 snapshots of 3, 4, 6, 9, 12,
and 15-mers); the objective function only decreased by less
than 1%, indicating that the force field was robust for different
cluster sizes. The final parameter set is given in Table 1.

4. RESULTS AND DISCUSSION
4.1. Quality of Fit. The final optimized model provides a

chemically accurate fit to the reference data. For a total of 5100
snapshots spanning 17 generations, the RMS energy error for
the 12-mer is 3.6 kJ/mol. The RMS force error is 10.3%. In the

final generation of the optimization, the RMS energy error and
force error change by less than 0.1% from their initial values,
thus indicating convergence.
The high quality of fit is reflected across the various physical

quantities being fit. First, the quality of the energy fit is evident
in the scatter plot of Figure 4. In contrast, the SPC/E point

charge model shows a much less satisfactory reproduction of
the QM reference data. As SPC/E was parametrized to
reproduce experimentally measured properties of water, this
demonstrates the potential incompleteness of such models in
modeling detailed atomistic interactions. Second, a representa-
tive 15-mer geometry is shown in Figure 5 to provide some
insight into the quality of the force fit. Both QM reference and
MM forces are drawn, but the vectors are often practically
coincident. This demonstrates how a force error of 10−11%
corresponds to forces that are visually indistinguishable. Third,
the dipole and traceless quadrupole moments of the water
molecule were also reproduced to within 5% of the reference
data. For comparison, the traceless octupole moment, which

Table 1. Parameters for the Polarizable Water Modela

Morse r0 (nm) D (kJ mol−1) a (nm−1)

rOH 0.10251 183.90 28.134
angle θ0 (deg) kθ (kJ mol−1 rad−2)

θHOH 113.73 396.82
Urey−Bradley r0 (nm) k1−3 (kJ mol−1 nm−2)

rHH 0.031562 6322.3
QTPIE χ (eV) η (eV) α (bohr−1)

H −1.1973 18.059 0.35423
M (in-plane) 4.1282 11.209 0.32822
L (out-of-plane) 4.5228 11.596 0.32027

virtual sites a c (nm−1)

M (in-plane) 0.26061 n/a
L (out-of-plane) 0.10086 2.4066

van der Waals σ (nm) ε (kJ mol−1) γ

rHH 0.99403 0.0005 8.9623
rOH 0.29451 1.6072 5.1196
rOO 0.36174 1.0334 13.256

aThere are a total of 27 parameters; the average electronegativity has
no effect on the interactions.

Figure 4. Scatter plots of the relative energies for 5100 configurations
of the water 12-mer for SPC/E (gray), the fitted data for our new
model (red), and predicted energies for configurations not used in the
fit (blue).
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was not fit, disagrees with the reference data by roughly 15%.
Fourth, we found in our multicluster study that the RMS
energy error scales roughly linearly with cluster size, where each
additional water molecule contributes 0.3 kJ/mol to the RMS
energy error. The RMS force error has a weaker dependence on
the cluster size, ranging from 8.5% for the water trimer to
11.5% for the 15-mer.
After the 16th optimization cycle, the generated force field

was fit to 4800 snapshots, but not the final set of 300 snapshots.
The small changes in the parameters observed by including the
final set of snapshots in the 17th generation indicates that the
force field is essentially just as accurate for newly sampled
snapshots and snapshots used in the fit. This indicates an
absence of overfitting to the QM reference data.
4.2. Optimized Model Parameters. The final optimized

parameters are given in Table 1. While the parameter values
should not be interpreted too literally, the final parameter
values do contain a few surprises. We now discuss the
implications of our fitting results.
The Urey−Bradley interaction has an equilibrium HOH

angle of 113° and an equilibrium H−H distance of only 0.039
nm. These do not coincide with the equilibrium geometry of
the water monomer. Despite this, the force field provides an
equilibrium geometry that closely matches the reference
geometry (RMSD = 0.7 pm). This apparent discrepancy can
be explained by frustration between the angle term, which
favors an increased HOH angle, and the 1−3 term, which
favors a shorter H−H distance. At the equilibrium geometry of
the water molecule, the Urey−Bradley energy is 44 kJ/mol.
Perhaps our most surprising results are the optimized virtual

site positions, which are shown in Figure 2. The position of the
oxygen charge site resembles the M site in previous four-site
water models. However, the out-of-plane sites (gray spheres in
Figure 2) are consistently placed on the same side as the
hydrogen atoms. This persists even with initial guesses in the
lone pair positions or if the oxygen charge site location was
fixed. This is clearly a consequence of the near-isotropy of the
dipole polarizability of water, and demonstrates the inadequacy

of lone pair models to reproduce the polarization properties of
water.
The QTPIE parameters also demonstrate some interesting

trends. As expected, the M and L (in-plane and out-of-plane)
charge sites are significantly more electronegative than
hydrogen. (There is no charge site on the oxygen atom.) The
effective O−H electronegativity difference compares favorably
with the QEq parameters:51 whereas QEq uses an electro-
negativity difference of 4.2 eV, we find an optimized value of
5.3 eV. As in the QEq model, the absolute electronegativities
are not physically significant. We also find that the in-plane site
is more electropositive, but also softer, thus resulting in a
greater tendency to accumulate negative charge. This reflects
slight anistropy of the dipole polarizability, with the out-of-
plane polarizability being the smallest component.
The optimized vdW potentials are plotted in Figure 6. The

O−O interaction goes to zero at a separation of rOO = 0.316 nm

with a well depth of 1.03 kJ/mol; the crossover point agrees
well with existing water models,3,35,36 but the well depth is
deeper than expected. The O−H interaction has a crossover
point at rOH = 0.24 nm, and the repulsion is significantly softer
than the O−O interaction (note that the typical O−H distance
in a hydrogen bond is 0.07 nm inside the repulsive region). In
stark contrast to the oxygen potentials, the H−H potential is a
soft, essentially purely repulsive wall. These observations are
consistent with the fact that many water models have no vdW
interactions on hydrogens, as the commonly used Lennard−
Jones functional form would be too sharply repulsive to provide
a good description.

4.3. Validation: Predicting Properties of Liquid Water.
To validate our force field, we compare the predictions made of
some properties of liquid water with experimental measure-
ments. This is a particularly severe test of the accuracy and
transferability of our intermolecular interactions, as the model
was parametrized using data from only gas-phase water clusters.
To compute the liquid water properties, we used a periodic

cubic simulation cell with 512 water molecules. Our simulations
used a 1.0 fs time step. Dynamics in the NPT ensemble was
achieved using a Nose−́Hoover thermostat68,69 and a
Parrinello−Rahman barostat70 as implemented in the GRO-

Figure 5. Atomistic forces on a representative water 15-mer from the
QM reference data (blue) and the force field (yellow), showing near
coincidence for many atoms. The representative configuration
demonstrates a force field with a RMS force error of 11%. The
lengths and thicknesses of the force vectors were scaled by an arbitrary
global factor to aid visualization.

Figure 6. The optimized van der Waals interactions for the water
molecule. The O−O potential (blue, dashed) is in close agreement
with existing water models, but the well depth is deeper than expected.
The O−H potential (orange, dashed) is softly repulsive in the
hydrogen bonding region. The H−H potential (black, solid) is entirely
repulsive and decays slowly.
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MACS 4.0.7 simulation code.25 For this study, we performed a
total of >20 ns of MD simulation of the water box at 298.15 K
and 1 atm.
Table 2 summarizes some of the properties we have

investigated. First, the bulk density disagrees with experimental

values by 4%. Although a seemingly small error, the high
incompressibility of water suggests that pressure fluctuations
may not be well-described in our model.
The electrostatic properties of water are also in good

agreement with experimental values. We calculated a dielectric
constant of 85 ± 10, which agrees well with the experimental
value of 78.71 The large error bars result from the slow
convergence of fluctuations of the box dipole moment. We also
found the dipole moment of the model water molecules to
increase from 1.85 D in isolation to 2.63 D in the liquid phase,
in good agreement with previous experimental and theoretical
assessments of the dipole moment of liquid water mole-
cules.50,72−74

Not all the properties we looked at were predicted well. The
predicted self-diffusion constant was (1.5 (± 0.2) 105 cm2 s−1),
in contrast to the experimental value of (2.3 × 105 cm2 s−1).
Abnormally low diffusion constants for water molecules have
also been observed for other polarizable models of water,75−79

suggesting that the polarization response is a common cause.
Furthermore, our model did not correctly predict the
temperature of maximum density for liquid water; the
temperature of maximum density was found at −20 °C instead
of the experimentally measured 4 °C. This problem could stem
from our choice of optimization procedure, which only sampled
water molecules from the room temperature canonical
ensemble.
The computed radial distribution functions of water are

plotted in Figure 7, along with two experimentally derived
radial distribution functions.80−82 The plots show that the force
field correctly describes the structure of the liquid water at the
two-body level, except for some slight overstructuring which is
almost certainly due to the lack of nuclear quantum
fluctuations. Our results compare favorably with other
polarizable models such as AMOEBA75 and SWM4-DP.44

5. CONCLUSION

Our main goal in this article was to illustrate the utility of
systematic optimization methods and their ability to produce
high-quality force fields. ForceBalance provides a framework for
easily exploring improvements to the force field by changing
the optimization strategy, reference data, and functional form.
Here, we recap five main challenges/sources of error in our
strategy and suggest avenues for further improvement.

Table 2. Predicted Properties of Liquid Water and
Comparisons to Experimental Measurementsa

property computed experiment

density (kg m−3) 1040 ± 2 1000
dielectric constant 85 ± 10 78
dipole moment 2.6 2.3−2.9
diffusion constant (10−5 cm2 s−1) 1.5 ± 0.2 2.3
temperature of maximum density (°C) −20 ± 5 4

aThe experimental values are taken from ref 71.

Figure 7. Plots of the (a) O−O, (b) O−H, and (c) H−H radial distribution functions as predicted in this work (green), and as measured in ref 80
(blue) and ref 81 (gold).
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Reference Data. The reference QM data in this study
consisted of approximate calculations on finite sized clusters.
Our chosen QM method (MP2/aug-cc-pVTZ) is an incom-
plete treatment of electron correlation and may suffer from
basis set truncation errors, whereas the most accurate
benchmark calculations for water cluster binding energies
employ the CCSD(T) method with complete basis extrap-
olation.83,84 Our choice of QM method was a compromise
between the requirements for high accuracy, comprehensive
configurational sampling, and large cluster sizes. In the future,
we plan to improve our model by incorporating more types of
data into our objective function, such as QM calculations with
periodic boundary conditions or experimental data.
Functional Form. Our choice of functional form was

adequate for fitting the MP2/aug-cc-pVTZ energies and forces
with chemical accuracy. The QTPIE interaction was a good
description of the intermolecular electrostatics, and we
introduced a new van der Waals interaction with a well-
behaved repulsive wall. However, there still remains a small
amount of energy and force error, and our electrostatic
treatment does not describe intermolecular charge transfer.
ForceBalance provides a framework for rapidly exploring the
space of functional forms, and in the future we plan to explore
functional forms of varying complexity and different treatments
of intermolecular charge transfer.
Sampling. We showed that the 27 parameters in our model

converged after 17 cycles of self-consistent optimization. The
WHAM-based convergence accelerator was instrumental in
achieving convergence because it allows us to use reference data
from previous generations without biasing the final result.
Despite our reference data being entirely based on small
clusters, our resulting force field performed quite accurately for
several experimentally measured properties of liquid water.
However, our model failed to find the temperature of maximum
density of liquid water; we propose that sampling from different
tempratures may produce a model that is better adapted to
temperature variations.
Regularization. Overfitted models are characterized by

unphysical parameter values and poor predictive power. In
ForceBalance, the physically acceptable range of parameter
values is quantified using a Bayesian prior. In the present study,
we find that the converged parameters are physically
interpretable (albeit not too literally), and the force field is
able to accurately predict energies and forces outside of the
training set. We observed that several force field parameters fell
outside our initial expectations, but the differences are not so
great that they are patently unphysical. These borderline cases
are the most interesting, because they suggest that the true
physical interaction differs from our intuitive expectations, and
in the future may guide us toward designing better functional
forms.
Classical Approximation. Quantum nuclear effects have a

profound impact on the behavior of water, giving rise to
phenomena such as deuterium fractionation and the kinetic
isotope effect, and also affecting the condensed phase
properties. It is generally acknowledged that including quantum
nuclear effects in a simulation leads to reduced structure,85,86

reduced phase transition temperatures,87 and increased
diffusion constants88,89 compared to a classical simulation;
there is also strong evidence for a competing stabilizing effect
from intramolecular zero-point vibrations.90 In the present
study, our use of classical molecular dynamics is a major
approximation that does not treat the quantum nuclear effects.

This may have contributed to the observed discrepancies with
experimental measurements. Empirical force fields implicitly
include these effects by fitting to the experimental data
directlybut some major issues remain, such as the unphysi-
cally large temperature gap between the freezing point and
density maximum in almost all models.91 The combination of
accurate ab initio-based parametrization of a polarizable force
field, a sound treatment of quantum nuclear effects, and
improved algorithms for more rapid simulations92 may be
sufficient to afford quantitative agreement with experimental
values comparable to empirical models; this is an exciting topic
for future study.
The water model presented in this work is not a bid for the

most accurate polarizable water modelit is quite accurate for
some, but not all, properties of liquid water. More importantly,
the procedure outlined in this work can be easily applied to
other systemsthis holds great promise for researchers who
wish to perform MM simulations but lack the force field for
their molecules of interest. In the future, we hope that
systematic parametrization methods like ForceBalance will
contribute to the molecular simulation community by
improving the accuracy of MM simulations and aiding in our
search for the essential physical interactions that govern the
dynamics of molecules.
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