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ABSTRACT: The structural properties of three- and four-site
water models are improved by extending the ForceBalance
parametrization code to include a new methodology allowing
for the targeting of any radial distribution function (RDF)
during the parametrization of a force field. The mean squared
difference (MSD) between the experimental and simulated
RDFs contributes to an objective function, allowing for the
systematic optimization of force field parameters to reach
closer overall agreement with experiment. RDF fitting is
applied to develop modified versions of the TIP3P and
TIP4P/2005 water models in which the Lennard-Jones
potential is replaced by a Buckingham potential. The
optimized TIP3P-Buckingham and TIP4P-Buckingham po-
tentials feature 93 and 98% lower MSDs in the OO RDF compared to the TIP3P and TIP4P/2005 models respectively, with
marked decreases in the height of the first peak. Additionally, these Buckingham models predict the entropy of water more
accurately, reducing the error in the entropy of TIP3P from 11 to 3% and the error in the entropy of TIP4P/2005 from 11 to
2%. These new Buckingham models have improved predictive power for many nonfitted properties particularly in the case of
TIP3P. Our work directly demonstrates how the Buckingham potential can improve the description of water’s structural
properties beyond the Lennard-Jones potential. Moreover, adding a Buckingham potential is a favorable alternative to adding
interaction sites in terms of computational speed on modern GPU hardware.

■ INTRODUCTION

The water molecule has been studied in great detail with
significant attention from experimental and theoretical
works1−3 due to its ubiquity and many unique properties
such as a large heat capacity and its expansion when frozen.
With such a large amount of attention given to water, naturally
there is a wide range of atomistic water models for molecular
simulation.4−7 The variation in these models comes from the
different approximations made in the model or which
properties of the system have been targeted during their
parametrization. Within the space of rigid water molecules,
TIP3P4 and TIP4P/20058 are common three- and four-site
water models used in biomolecular simulation and are the
starting point of our study. Improving the accuracy of
modeling water enables studies of biochemical mechanisms
with atomic resolution, for example protein−ligand binding9 or
protein folding.10 Some of the crucial properties for the
accuracy of these simulations are the entropy and enthalpy.
The entropy is strongly linked with the structural properties
and correlation in a fluid, and it is therefore important to note

that water exhibits significantly more correlation than a simple
LJ fluid of comparable densities.11

This work focuses on classical water models designed for
classical molecular dynamics (MD) simulation. Compared to
more exact quantum mechanical methods, classical MD and
the associated potentials employ many approximations
intended to describe much of the physics underlying the
behavior of a system implicitly. For example, water models
with nonpolarizable effective pair potentials do not allow for
the redistribution of charge on a molecule’s atoms, resulting in
the neglect of any induced dipoles. The permanent dipole of
the model may be fitted to include the averaged induced dipole
for a chosen density, but the approximation will start to fail as
the density and intermolecular separations start to deviate from
the parametrization conditions. Additional approximations
pertain to the intramolecular vibrations and their temperature
dependence, which are neglected by rigid water approxima-
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tions. Ideally these vibrational effects would receive a quantum
mechanical treatment; however, in the absence of this, many
water models812 will apply corrections to reproduce raw
experimental data.
Considering these approximations, the difficulty in selecting

potential forms and parameters that can reproduce a wide
range of properties over a wide range of temperatures and
pressures becomes clear. Historically, the parametrization of
force fields has been described as a “black art”13 because
modifying parameters, running simulations, calculating proper-
ties, and comparing with experiments involves a complicated
workflow that is arduous to perform manually and can be
difficult to reproduce. The ForceBalance code14 addresses the
challenge of reproducibility by enabling diverse types of
parametrization calculations in a common software framework.
In this work, our goal is to improve the agreement of water’s
simulated structural properties with experiment for two
common water models using ForceBalance as a principal tool.
Radial Distribution Functions. A radial distribution

function (RDF) describes the structure of a molecular system
as the variation in particle number density with distance from a
reference particle. Equation 115 shows how a RDF could be
calculated.

ρ
π

=αβ
αβ→

g r
r dr

N V r dr
( ) lim

( , )
4 ( / )dr 0 2

(1)

Here r is the distance between the atom pairs, ρ(r, dr) is the
number of atom pairs in the infinitesimal shell spanning r to r
+ dr (averaged over all trajectory frames), Nαβ is the number of
pairs for the two species considered, and V is the volume of the
system. ρ(r, dr) is normalized to the uniform density of an
ideal gas; thus any deviation for the value of gαβ(r) from unity
is the result of some order or correlation in the material. While
an RDF cannot be used as a unique fingerprint for a material, it
can be a robust description. RDFs can be informative of bond
lengths and coordination number and can be used to calculate
many thermodynamic properties assuming the potentials
describing the system are pairwise additive.16 Moreover,
RDFs can be derived from experimental X-ray or neutron
diffraction data to provide robust comparisons between
simulation and experiment.
Water can cause potential complications in the calculation of

the experimental RDFs due to the presence of light and weakly
charged hydrogen. X-ray diffraction is a good tool to calculate
the OO RDF, but less information about HH and OH RDFs
can be extracted.17 Neutron diffraction methods also have
difficulty with hydrogen, as the low atomic weight makes it
difficult to approximate the neutron scattering as elastic, and
this inelasticity complicates the measurement. As a treatment
the inelasticity can be modeled1 or isotope substitution can be
used. In 1982 Soper1 used the latter to make a calculation of
water RDFs. The neutron diffraction Soper data from 200017

was used as the experimental reference in this work. The RDFs
in Soper’s work are calculated at 298 K and 1 atm of pressure.
Entropy. One benefit of accurately reproducing the

experimental RDF is improving calculations of the excess
entropy. The link between the excess entropy and RDF is clear
when considering the RDF as a measure of correlation in
atoms. RDFs as presented can be used to calculate the
translational two-body entropy of a fluid, and these calculations
can be seen more formally in the work of Hernando18 and
Laird et al.19

For a molecular fluid such as water, an additional
orientational component to the two-body entropy exists.
Studies which look at the entropy of water beyond the two-
body translational term have been carried out by Lazaridis et
al.11 and conclude that within the two-body entropy there is a
significant contribution from the orientational correlation,
around three times the translational excess entropy when
studying TIP4P. Considering this, to improve the computed
excess entropy for water, it would be beneficial to target the
orientational correlation of a fluid via an orientational
distribution function (ODF). However, in the case of water
this is much more expensive to compute than the RDF with
the relative orientation defined by five angles. Even if
computed the ODFs cannot be compared to experimental
data by calculating a MSD, as there is currently no method to
extract the ODF directly from experiment.20,21 Consequently,
ODFs are not compatible with the presented fitting method-
ology, which relies on a MSD, and as such will not be targeted
in this work. However, the RDF still can and will be used as a
target property.

Water Models. For later reference and for clarity, a
presentation of the 3D models of TIP3P and TIP4P is
presented in Figure 1. Both models are rigid and non-

polarizable and have a single VDW site located on the position
of the oxygen and partial charges on the hydrogen positions.
TIP3P has a negative partial charge on the oxygen atom,
whereas TIP4P places this charge on a fourth (virtual) site.22

The fourth site was originally explored by Bernal and Fowler2

with the site introduced to allow for the screening of the
hydrogen charge, moving some of the charge distribution
toward the hydrogens along the HOH bisector; it also allows
for the charge distribution to be varied independently of the
HOH geometry or dipole.
TIP3P is a reparametrization4 of an earlier three-point

model TIPS built by Jorgensen et al.3 TIPS force fields were
built as part of an effort to simulate many solvents including
water, alcohols, and ethers. TIP3P is one of the more common
models with large understructuring in the second and third
shells, as seen in Figure 2; this is somewhat corrected by more
recent work to parametrize this force field for use with Ewald
summations.5 TIP4P-type models again have several para-
metrizations such as TIP4P,6 TIP4P/2005,8 and TIP4P/ICE.23

TIP4P was reparametrized as TIP4P/2005 by Abascal et al.8

with a fit based on the temperature of maximum density.
TIP4P/2005 shows good agreement for many properties
particularly the density; however, the simulated RDFs differ
from experiment, with the first peak on the OO RDF showing

Figure 1. Representation of TIP3P and TIP4P geometries: TIP3P left
and TIP4P right. Oxygen is shown in red, hydrogen is shown in white,
and the TIP4P virtual site is shown in blue. HOH are bonded with an
angle between them, θ°. The virtual site position is defined as a
function of atomic positions and placed along the HOH angle
bisector. l1[Å] is the OH bond length, and l2[Å] is the distance
between oxygen and the virtual site.
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marked overstructuring as shown in Figure 3. Other para-
metrizations using ForceBalance with three- and four-site
models have been performed previously,14 focusing on
improving agreement for thermodynamic properties. The
resulting TIP3P-FB and TIP4P-FB models provided improved
predictive power for the kinetic properties such as the self-
diffusion coefficient, but these models still have overstructuring
in their RDFs similar to TIP4P/2005.
The LJ interaction in these TIPnP models is of particular

interest. Soper highlighted the possibility that the r−12 term is
too repulsive and may be the cause of much of the
overstructuring seen in the first shell of the OO RDF;24 an

additional exponential term was added to the nonbonded
potential with the aim of softening the LJ interaction. The
discussion by Wheatley et al. on the approximately exponential
nature of intermolecular repulsion25 makes the Buckingham
potential26 a good candidate to replace the LJ. Wang et al.27

applied a modified version of the Buckingham potential in the
parametrization of a polarizable water model, where the
functional form was altered to remove the singularity at the
origin. Despite these efforts, the first shell of the OO RDFs of
these models remained overstructured compared to experi-
ment, with one possible cause attributed to the lack of nuclear
quantum effects in the classical simulations.27

Figure 2. OO, OH, and HH RDFs for the original TIP3P
parametrization (TIP3P-LJ OG) compared to Soper data.17

Figure 3. OO, OH, and HH RDFs for the original TIP4P/2005
parametrization (TIP4P-LJ OG) compared to Soper data.17
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■ MATERIALS AND METHODS
Radial Distribution Function Fitting. ForceBalance is a

program which allows for the systematic fitting of force field
parameters13 by including bulk properties taken from experi-
ment and/or high-level theoretical calculations in the objective
function. In this work, ForceBalance is extended to target any
RDF of any material. During the fitting procedure, Force-
Balance carries out a MD simulation by calling external
simulation software; the MD simulations in this work are
performed by OpenMM;28 this code includes GPU-accelerated
implementations of the force fields and simulation methods.
Simulation snapshots are saved at equally spaced time intervals,
and a calculation of each targeted property is made for each
snapshot. The RDF calculation from snapshot coordinates is
handled by MDTraj,29 a Python library that focuses on fast
MD trajectory analysis. Once the RDFs for all snapshots are
computed, a mean squared difference (MSD) is calculated
between them and an experimental RDF, provided by the user.
The MSD is calculated for every snapshot individually before
any averaging. This MSD when weighted contributes to the
objective function in the fitting procedure, with Equation 2
showing the calculation the MSD

=
∑ −

A
N

(RDF RDF )n n n
comp exp 2

(2)

where A is the MSD for one of the targeted RDFs in one
snapshot, averaging across snapshots will give an ensemble
average of the MSD ⟨A⟩. n indexes the bins in the histogram of
the RDF. RDFcomp is the computed RDFs, and RDFexp is the
experimental RDFs. N is the total number of bins, which is set
by the number of data points in the experimental RDF
provided by the user. To change the relative contribution of
RDFs to the objective function the MSD can be multiplied by
a user defined prefactor that sets the relative weights for the
different RDF targets; the weights in this work are provided in
Table 1. The optimization carried out in this work took place

in two steps: first allowing all the models parameters, excluding
the geometric parameters to be optimized, and then following
this with further optimization of all parameters including
geometric parameters. This was done to keep bond angles and
lengths close to physical values and mitigate problems of
overfitting. When running an optimization, the prefactor for
each residual in the objective function is specified. These
prefactors are chosen differently between the two runs of
optimization and are shown in Table 1. The prefactors in the
optimization are chosen initially (Initial) in line with Wang et
al.14 work on ForceBalance. The revised (Revised) prefactors in
the continuation of the optimization are chosen to
approximately normalize the contribution of the properties

residual to the objective function during optimization and
reflect the desire to achieve better experimental agreement for
Hvap, with the aim of ultimately improving agreement with
experimental free energies.
To minimize the objective function efficiently, ForceBalance

needs the gradient of the target property w.r.t. the fitting
parameters, and Equation 3 shows how this gradient is
calculated.

λ
β

λ λ
⟨ ⟩ = − − ⟨ ⟩

i
k
jjjj

y
{
zzzz

A
A

E
A

Ed
d

d
d

d
d (3)

In the equation above, λ is the parameter which is being
optimized, β is the reciprocal of the temperature and
Boltzmann constant product, E is the potential energy, and
dE/dλ is evaluated in ForceBalance by the postprocessing of
the collected trajectories. More details on this and the general
ForceBalance methodology can be found in the ForceBalance
papers.14,13

A feature of ForceBalance is the specification of rescaling
factors (also called prior widths) for the optimization
parameters; these have the dual effect of improving the
Hessian condition number used in the optimization algorithm
and second to limit how much the physical parameters can
vary during optimization. In this work, the priors are set to the
ForceBalance default value, which means the prior for each
observable takes the value of that observable. In all the
presented work, the nearest-neighbor OH and HH peaks
corresponding to intramolecular distances are omitted as the
models being optimized are rigid; improving the agreement in
these peaks would require a flexible model and/or treatment of
nuclear quantum effects.

Parametrization Simulations. Two sets of optimization
calculations were made in this work. The first set involves
fitting of TIPnP models using the LJ potential, and the second
set involves fitting alternative versions of the TIPnP models
where the LJ potential is substituted by a Buckingham
potential. All nonbonded and geometric parameters were fit
unless specified otherwise. Each step of optimization involved
running a simulation with a total length of 6 ns; the simulation
time step used was 2 fs. Simulation snapshots are saved, and
bulk properties/RDFs are calculated at 20 ps intervals,
providing 300 data points over the trajectory. The
experimental RDF was taken from neutron diffraction
experiments;17 the other data used for fitting was the enthalpy
of vaporization ΔHvap = 43.989 kJ mol−1 and density ρ =
997.045 kg m−3 for a temperature of 298 °C and 1 atm of
pressure.14 These simulations were performed in the NPT
ensemble using the Langevin integrator with 1 ps−1 time
constant and a Monte Carlo Barostat with volume changing
moves every 50 fs. A switching distance of 9 Å and cutoff of 11
Å were used with PME treating the long-range electrostatic
interactions; the Ewald tolerance was set to 5 × 10−4. The
optimizations used 25−30 Å water cubes containing 512−895
molecules with periodic boundary conditions. Self-polarization
corrections were applied for the calculation of the heat of
vaporization with the permanent dipole moment μo = 1.855
Debye and polarizability α = 1.47 Å3.30 The RDFs for final
presentation in the results section were calculated after the
fitting under the same conditions, however, now using a 10 ns
trajectory and 1 ps snapshot allowing for better converged
values.

Table 1. Relative Prefactors of Target Properties Used in
the Twoa Runs of Sequential Parameter Optimizationb

ρ Hvap OO-MSD OH-MSD HH-MSD

Initial 1 0.16 1000 1000 1000
Revised 1 1600 40000 20000 100000

aThe first run is denoted as Initial; the second run is denoted as
Revised. Prefactors are presented as relative to the prefactors of the
density. bPrefactors presented are for density ρ, enthalpy of
vaporization Hvap, and MSDs between experimental and computed
RDFs OO-MSD, OH-MSD, and HH-MSD.
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Buckingham Potential. The Buckingham potential can be
used by OpenMM within the custom force feature. Using the
functional form shown in Equation 4,27 there are now three
parameters that need to be fit: ε, Rmin, and γ.

ε
γ γ

=
−

−γ −
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjj

y
{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
V e

R
r1 6/

6 r
Rb0

(1 ) min
6

min

(4)

Here ε is the well depth, Rmin is the position of minimum
energy, and γ is a constant which controls the repulsiveness.
The singularity at a radial distance of zero should be noted; for
small enough γ values, particles can jump over the repulsive
barrier falling into the singularity producing unphysical results.
In the calculations presented here, γ never enters a region of
parameter space which would allow for this jumping to become
a problem. This Buckingham potential is added to the oxygen
in place of the LJ potential.
Free Energy Calculations. To assess the claim that fitting

to the RDF will improve the entropy of bulk water these
entropies must be calculated. The calculation of the entropy
will be made from calculations of the Gibbs free energy and
enthalpy following the definition of the excess free energy
given in Equation 5

= −G H TSsexces excess excess (5)

where ΔGexcess is the excess free energy, ΔHexcess is the excess
free enthalpy which is equivalent to −Hvap, and TSexcess is the
temperature multiplied by the excess entropy. If the free energy
and enthalpy are calculated, then the entropy can be accessed.
The enthalpy was calculated within ForceBalance via a
fluctuation formula, and this was done during the fitting,
with the computed values presented in Table 2. The free
energy calculations require additional work to compute. For
this YANK31 a GPU accelerated platform for alchemical free
energy calculations was used.
For the LJ potentials, a straightforward application of YANK

can be made. The free energies for the original and optimized
three-point and four-point models using the LJ potential are

calculated by studying the annihilation of a single water in a 25
Å box of water with Hamiltonian replica exchange32 for 15
replicas with swapping made between neighboring replicas
every 1 ps for a total of 5000 iterations of swapping, giving 5 ns
of sampling per replica. These calculations were performed
three times for every water model, an analysis was performed
by YANK using the MBAR method,33 and the resulting three
free energy values are given a polarization correction, as was
done previously for ΔHvap. This gives three ΔGexcess values
which were then averaged and presented in Table 2 (see Table
S1 in the Supporting Information for the raw data).
The free energies for the water models using the

Buckingham potential required an extension to Open-
MMTools,34 a library used by YANK. This extension was
made in this work, and the extended version of the code can be
found here https://github.com/adw62/openmmtools/tree/
Buckingham. The original functional form of the Buckingham
potential is prohibitive to alchemical free energy calculations as
there is a singularity in the potential for r = 0, where r is the
separation between interaction centers. This singularity
becomes exposed for small values of λ in an alchemical
pathway, where λ is a parameter used in alchemical
calculations35 to scale interactions. To avoid this singularity a
hybrid of two Buckingham-like functional forms is used. Both
individual functional forms can be found in the work of Wang
et al,27 with the individual functional forms shown in
Equations 4 and 6 and the hybrid presented in Equation 7.
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Evidently, if Equation 6 was used from the beginning, then
the hybrid is redundant, and this would be suggested for future
work. A plot of Equation 7 for different λ can be seen in Figure

Table 2. Calculated Properties for Original and Reparametrized Water Modelsa

3P - LJ OG 3P - LJ OPT 3P - Buck 4P - LJ OG 4P - LJ OPT 4P - Buck exp tol

μ(D) 2.35 2.20 2.34 2.31 2.15 2.25 2.5−3.0 2.5
ρ [g/cm3] 0.985 1.004 0.998 0.996 0.999 1.005 0.997 0.5
D [109 m2/s] 5.63 5.38 4.51 2.34 3.97 2.94 2.29 2.5
ϵ(0) 95.8 50.9 68.7 56.9 41 53.4 78.5 2.5
Cp [cal/(K·mol)] 16.5 18.1 18.2 19.1 19.6 19.3 18.0 2.5
αp [10

−4 K−1] 9.86 6.11 5.89 2.93 5.76 4.99 2.56 2.5
κp [10

−6 bar−1] 57.3 46.4 45.2 47.7 51.2 45.4 45.3 2.5
OO g(r) Max 2.62 2.94 2.75 3.08 2.93 2.66 2.75 2.5
TMD [K] 196 241 241 274 248 252 277 2.5
Gexcess [kcal/mol] −5.21 −6.12 −6.19 -6.38 −6.16 -6.28 −6.33 0.5
Hvap [kcal/mol] −8.95 −10.50 -10.51 −11.01 −10.18 −10.58 −10.51 0.5
Sexcess [cal/(K·mol)] −12.45 −14.61 −14.41 −15.42 −13.41 -14.32 −14.05 0.5
OO-MSD 0.0138 0.0021 0.0009 0.0156 0.0020 0.0003 0.0000 2.5
OH-MSD 0.0109 0.0068 0.0058 0.0172 0.0143 0.0096 0.0000 2.5
HH- MSD 0.0047 0.0022 0.0020 0.0005 0.0025 0.0006 0.0000 2.5
Score 3.09 5.28 6.45 5.82 4.44 6.05 10.00 N/A

aExperimental data are taken from refs 14, 20, and 32. Abbreviations: ρ. density; Hvap, enthalpy of vaporization; ϵ(0), static dielectric constant; κT,
isothermal compressibility; Cp, isobaric heat capacity; αp, thermal expansion coefficient; D, self-diffusion coefficient; μ(D), fix dipole; OO g(r) Max,
maximum height of the O−O RDF; TMD, temperature of maximum density; ΔGexcess, excess free energy; ΔSexcess, excess entropy; and MSDs
between experimental and computed RDFs OO-MSD, OH-MSD, and HH-MSD. 3p and 4p denote three- and four-point models. LJ OG denotes
the original parametrization. LJ OPT denotes the LJ model optimized in this work. Buck denotes the Buckingham model optimized in this work.
Score and tol are found in Equation 8.
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4. Equation 7 reduces to Equation 4 when λ = 1, but as λ is
perturbed along the alchemical path it behaves like Equation 6

without an exposed singularity, which is crucial for the
alchemical calculation.
With this functional form implemented into YANK, free

energy calculations for the Buckingham models could be
performed. The alchemical calculations are performed with an
identical methodology to the LJ calculations with three free
energies calculated and averaged as before and presented in
Table 2.
Geometry. To calculate the derivative of the calculated

property w.r.t. the fitting parameters (needed for the parameter
optimization) ForceBalance needs access to the gradient of a
snapshot’s energy with respect to the fitting parameters. In this
work, this becomes a problem when optimizing the geometry
of rigid water molecules as the energy of the system can no
longer be considered an explicit function of the geometric
parameters.14 The optimization of geometric parameters is
carried out using a trick where all the interaction sites are made
into virtual sites during the parametrization calculation only;
the parameters defining the virtual site positions are then
optimized. Varying these parameters varies the position of the
virtual sites and so the position of the interaction sites. Finding
the optimal value of these parameters is equivalent to finding
the optimal position of the interaction sites. Since we are only
concerned with thermodynamic properties, the positions of the
masses in the molecule are unimportant, but this would affect
the fitting of kinetic properties. When optimizing the geometry
with the above method, the RDFs are calculated from the
positions of the virtual interaction sites instead of the positions
of the masses. After parametrization the virtual sites are
restored to be normal interaction sites, but the interaction sites
are now in the optimal position determined by the
optimization; and therefore, these virtual sites, used for
geometry optimization, play no role in the force field after
the parametrization.
Scoring. Following the model parametrization, a modified

form of the scoring equation proposed by Vega et al.36 is used
in this work to qualitatively compare the relative performance
of the water models. Used by Vega and Izadi,3637 this scoring
system compares water models and their relative performance
at reproducing a variety of bulk properties with experimentally
known values. Included in these properties are the height and

position of the first OO RDF peak. Efforts are made in the
work of Izadi37 to choose the LJ parameters in a way to
maximize the agreement for the position of the first peak and
the density. It is then appropriate in their scoring system to
consider only the height and position of the first OO RDF
peak. In this work, however, an assessment of the agreement
for every calculated point for all water RDFs is needed. The
first approach to this would be to consider every point in the
RDFs in the same way Izadi considers the first OO peak.
However, in Vega’s scheme, which takes the maximum of
[10−|(x − xexp) × 100/(xexp

tol)|] and 0, it is possible for
models with extremely poor agreement in the RDF over a
small r range and good agreement everywhere else to
outperform a model which performs with average agreement
everywhere. Therefore, a modified method of scoring is
presented in Equation 8.

= −
∑ | − × |l
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n
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ÅÅÅÅÅÅÅÅÅÅ
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}
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x x x

N
Score max 10
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The definitions in Equation 8 are like those made in Vega’s
work36 except there is now a summation over n which indexes
the nonzero points in the RDF with N as the total number of
nonzero points in the RDF. In the case of properties outside
the RDFs N would be set, N = 1, and Equation 8 reduces to
Vega’s scoring system. This Score will be calculated for the
properties and tol values shown in Table 2. For comparison
Izadi37 uses a tol of 0.5 for ρ, Hvap, and position of the first OO
peak, 5.0 for the height of the first peak, and 2.5 for all other
properties. The larger the value of tol the larger the difference
between calculated and experimental properties can be before
the Score is reduced. The individual Score for each property is
averaged to give the final Score.

■ RESULTS

Lennard-Jones Potential. The first section of the results
will present the force fields which are using the LJ functional
form optimized by RDF fitting. Figure 5 shows the resulting
RDFs of an optimization starting from the original TIP3P
parametrization. Agreement is improved for all RDFs over the
original parametrization. Relative to Figure 2 the under-
structuring in the second and third shell of the OO RDF has
been reduced; however, this has introduced some over-
structuring in the first shell. It will be shown in subsequent
sections that this can be treated with the Buckingham
potential.
The next set of plots, Figure 6, pertains to the RDF fitting of

the TIP4P/2005 model. Compared to the original TIP4P/
2005 parametrization, Figure 3 shows that there is an
improvement to the OO and OH RDF. The most notable
improvement is to the decrease in the overstructuring in the
first OO shell which also can be seen as a decrease in the
overstructuring of the first OH shell. There is, however, a
decrease in the agreement of the HH RDF. The original
TIP4P/2005 has a HH RDF which agrees well with
experiment. Therefore, the agreement of the HH RDF is
likely to worsen as the optimizer attempts to improve the OO
RDF while sacrificing the HH RDF. This potentially could be
fixed by changing the relative weights of the RDFs. Moreover,
while the OO overstructuring has decreased it has not been
completely resolved.

Figure 4. Plot of Equation 7 for λ in range 1.0 to 0.0, with ε = 1.0,
Rmin = 0.35, and γ = 15.
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Buckingham Potential. The following section will now
consider the use of the Buckingham potential in the currently
presented RDF fitting procedure. Here, TIP3P geometry and
charges with a Buckingham potential are taken as a starting
point. The initial parameters of the Buckingham potential are
chosen at hand ensuring the density of the box remains close
to 1000 kg m−3 after equilibration. The results of these
optimizations are presented in Figure 7. The understructuring
in the second and third shells is largely resolved, similar to the
results in Figure 5; however, now there is also less

overstructuring in the first shell. The introduction of the
Buckingham potential appears to have made it much easier for
these features of the OO RDF to simultaneously agree. All
RDF’s MSD are improved by the introduction of the
Buckingham potential relative to the original parametrization
and to the LJ optimization. Next, the Buckingham potential
using TIP4P/2005 geometry and charges is optimized with the
result shown in Figure 8. Relative to the optimization using the

Figure 5. OO, OH, and HH RDFs for an optimized TIP3P type
model with a LJ potential (TIP3P-LJ OPT). The parameter set of
TIP3P-LJ OPT is parametrized with the fitting procedure shown in
this work, compared to OO, OH, and HH RDFs for TIP3P with the
original parameter set (TIP3P-LJ OG) and experimental Soper data.17

Figure 6. OO, OH, and HH RDFs for an optimized TIP4P type
model with a LJ potential (TIP4P-LJ OPT). The parameter set of
TIP4P-LJ OPT is parametrized with the fitting procedure shown in
this work, compared to OO, OH, and HH RDFs for TIP4P/2005
with the original parameter set (TIP4P-LJ OG) and experimental
Soper data.17
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LJ potential, Figure 6, there is an improvement to all RDFs.
Similar to using the Buckingham potential in TIP3P the
overstructuring in the first shell can again be reduced.
Compared to the original TIP4P/2005, both the OO and
OH RDFs significantly improve, while there is no significant
change in HH RDF MSD.
The temperature dependence of the densities can be seen in

Figures S1 and S2 in the Supporting Information. Difference
plots between the calculated and experimental RDFs are

presented in Figures S3−S8 in the Supporting Information.
These highlight the improved RDFs in the majority of cases,
particularly the O−O RDF.

■ DISCUSSION
The improvement to the RDF has been presented in Figures
5−8, but to make a more complete discussion of the presented
models, additional relevant properties and all parameters
should be inspected. These values are presented in Tables 2

Figure 7. OO, OH, and HH RDFs for an optimized TIP3P type
model with a Buckingham potential (TIP3P-Buckingham). The
parameter set of TIP3P-Buckingham is parametrized with the fitting
procedure shown in this work, compared to OO, OH, and HH RDFs
for TIP3P with the original parameter set (TIP3P-LJ OG) and
experimental Soper data.17

Figure 8. OO, OH, and HH RDFs for an optimized TIP4P type
model with a Buckingham potential (TIP4P-Buckingham). The
parameter set of TIP4P-Buckingham is parametrized with the fitting
procedure shown in this work, compared to OO, OH, and HH RDFs
for TIP4P/2005 with the original parameter set (TIP4P-LJ OG) and
experimental Soper data.17
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and 3, respectively. Table 2 features the Score as defined in
Equation 8, and this is a measure of the relative performance of
the presented models. This Score is calculated with the
calculated and experimental properties along with the
tolerances in Table 2 using Equation 8. The static dielectric
constant ϵ(0), isothermal compressibility κT, and isobaric heat
capacity Cp are calculated by fluctuation formulas in Force-
Balance from the same 10 ns trajectory used to calculate the
RDFs. The thermal expansion coefficient, αp, is calculated
following the methodology of Abascal et al.8 performed on
seven 0.5 ns simulations being run between 240 and 360 K.
The self-diffusion coefficient D is calculated following the
methodology of Horn et al.12 using 20 simulations of 100 ps in
an NVE ensemble. μ(D), ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT,
Cp, and αp are included in Table 2 to assess the predictive
power of these models; they are properties which were not
targeted in the parameter optimization. The poor scoring of
TIP3P should be noted; this is a result of the calculations being
performed with PME, a scheme for which TIP3P was not
parametrized. However, without PME the RDFs remain
equally understructured.4

It is clear from looking at the calculated properties in Table
2 that the fitting for TIP3P improves overall agreement with
experiment. Relative to the original, TIP3P, parametrization
optimizing the LJ potential improves the prediction for D,
TMD, ΔGexcess, ΔSexcess, κT, Cp, and αp. However, accuracy is
lost for ϵ(0) and μ(D). TIP3P-Buckingham corrects this loss
of accuracy in ϵ(0) and μ(D) and further adds to the predictive
power of the model. Compared to the LJ optimization, the
Buckingham optimization has improved predictions for μ(D),
ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT, Cp, and αp. The TIP3P-
Buckingham force field also has the best agreement for the
fitted properties ρ, ΔHexcess, and all RDF MSDs of any of the
TIP3P models presented here.
The LJ optimization in the case of TIP4P/2005 only

demonstrates an improved prediction for the calculated value
of ΔSexcess but generally sees improved accuracy for the fitted
properties OO-MSD, OH-MSD, and ΔHexcess. This is perhaps
not surprising considering that the TIP4P/2005 parameters
have already been carefully optimized to reproduce temper-
ature-dependent and phase change properties. On the other
hand, the usefulness of the Buckingham potential is more
clearly demonstrated. Compared to TIP4P/2005, the Buck-
ingham model has equivalent or improved predictions for κT,
ΔGexcess, and ΔSexcess but reduced accuracy for μ(D), ϵ(0), D,
TMD, Cp, and αp. Of the fitted properties, improved accuracy
is seen for OO-MSD, OH-MSD, and ΔHexcess, and in general
overall agreement with experiment is improved, reflected by

the higher Score of TIP4P-Buckingham. The reduction in
accuracy for TMD, Cp, and αp should not detract from the
utility of the Buckingham potential, as no effort was made to fit
to any temperature dependent properties in this work. Relative
to the optimized LJ model, TIP4P-Buckingham has improved
predictions for μ(D), ϵ(0), D, TMD, ΔGexcess, ΔSexcess, κT, Cp,
and αp; for the fitted properties, improvement is seen for all
RDF MSDs and ΔHexcess. In the case of both TIP4P-
Buckingham and TIP3P-Buckingham the predicted isothermal
compressibility is closer to experiment than original and
optimized LJ models, which may reflect the physically
motivated repulsive part of the Buckingham potential.
Adding the Buckingham potential with TIP4P/2005

improves overall agreement between the calculated and
experimental properties examined in this work. However, the
improvement is less definitive compared to using the
Buckingham potential in TIP3P, particularly for temperature
dependent properties. As a more stringent test of the
usefulness of the Buckingham potential, we suggest that the
TIP4P/2005 optimization could be reproduced, but using the
Buckingham potential instead of LJ. Any improvement or lack
thereof in this parametrization would be a good assessment of
the Buckingham potentials utility in four-point models.
Of main interest to this work was correcting the over- and

understructuring in the OO RDF. It can be seen in Table 2
that both RDF fitting and the use of the Buckingham potential
are effective tools to treat this. Using RDF fitting, 85 and 87%
reductions to the OO MSD are achieved for TIP3P and
TIP4P/2005 respectively. When the LJ potential in the TIP3P
and TIP4P/2005 models is replaced with a Buckingham
potential and optimized targeting the RDF, the MSD in the
OO RDF is reduced by 93 and 98%, for TIP3P and TIP4P/
2005 respectively. It can be seen in Table 2 that this increased
agreement for the RDFs has translated into improved
predictions of ΔSexcess. In the case of TIP3P the correction
of the understructuring in the O−O RDF has increased the
correlation in the water and reduced the error in the entropy
from 11% to 3%. For TIP4P/2005 the correction of the
overstructuring in the O−O RDF has reduced the correlation
in the water and reduced the error in the entropy from 11% to
2%. Both the three- and four-point models using the
Buckingham potential have ΔSexcess which agree most closely
with experiment compared to the other models examined here.
Figures 9 and 10 show comparisons of the LJ and

Buckingham potentials using the parameters from Table 3.
From Figures 9 and 10 it can be seen that for small atomic
separation the Buckingham potential is less repulsive than both
original and optimized LJ parametrizations. In the case of

Table 3. Parameters for Original and Reparametrized Water Modelsa

3P - LJ OG 3P - LJ OPT 3P - Buck 4P - LJ OG 4P - LJ OPT 4P - Buck

ϵ [kcal/mol] −0.1521 −0.1556 −0.1849 −0.1852 −0.1313 −0.1978
Rmin [Å] 3.5358 3.5335 3.5373 3.5457 3.5584 3.5764
γ N/A N/A 15.05 N/A N/A 14.12
q[e] −0.8340 −0.8506 −0.8189 −1.1128 −0.9824 −1.0828
l1 [Å] 0.9572 0.9899 1.0284 0.9572 0.9116 0.9251
θ° 104.52 114.13 109.28 104.52 118.00 109.93
ϕ° N/A N/A N/A 120.79 119.44 120.51
l2 [Å] N/A N/A N/A 0.1558 0.0133 0.0982

a3p and 4p denote three- and four-point models. LJ OG denotes the original parametrization. LJ OPT denotes the LJ model optimized in this
work. Buck denotes the Buckingham model optimized in this work. l1[Å], l2[Å], θ°, and ϕ° are the geometrical parameters referenced in Figure 1,
and q[e] is the oxygen charge or virtual site charge again referenced in Figure 1.
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TIP3P the original and optimized potentials are very similar.
The plotted lines practically overlap on the presented scales.
These results indicate that the improved agreement of the
RDFs using the Buckingham potential is likely to result from
the reduced repulsiveness.
The other trend that can be commented on in these

optimizations is the change in the HOH angle. The optimized
LJ models favor large HOH angles of between 114° and 118°,
whereas the angles obtained in Buckingham optimizations are
between 108.89° and 109.93°. The angles obtained in the
Buckingham optimization are far closer to the tetrahedral angle
109.47°. The change to the bond length can be classified by
number of sites modeled where TIP3P models favor longer

bonds of approximately 0.99−1.03 Å and the TIP4P models
favor shorter bonds 0.91−0.93 Å. While progress has been
made in correcting the overstructuring in the first OO shell,
one problem with the current models is that none of them
agree well for the second OH shell, presented as the first peak
in all OH RDF plotted in this work. When moving from
TIP4P/2005 to TIP4P-Buckingham there is a reduction in
peak height associated with the OH second shell so that it is
closer to the Soper data;17 this should be expected as in a
hydrogen bonding configuration the OO first neighbor and
OH second neighbor distances are strongly linked, see Figure
11. Since the OO first shell is now in better agreement with

TIP4P-Buckingham but the error in the OH second shell
persists, perhaps the overstructuring in the OH second shell
comes from some other source with the first OH shell as a
potential candidate.
The nearest-neighbor peak is omitted in the OH and HH

RDFs in this work, and if plotted each would feature an
infinitely sharp peak corresponding to the OH and HH
separations within the molecule, respectively. When in a
hydrogen bonding configuration, the OH first and second
neighbor distances are also highly correlated (see Figure 11). If
the distribution of first OH neighbor distances is unphysically
localized due to the rigid bond approximation, this localization
could be inherited by the second OH neighbor distance. It
might be expected that for nonrigid models the problem would
be alleviated; however, this is not the case in common flexible
models SPC/Fw38 and uAMOEBA.39 While the source of this
error has not been treated in this work, a potential source has
been speculated upon, and a potential solution will be
commented on in the Conclusion.
It is demonstrable that the Buckingham potential improves

the accuracy for many of water’s computed properties, but this
should not come as a surprise. The repulsive component of the
LJ is chosen partly for computational convenience, and it
would be hoped that moving toward a more accurate physical
description of the repulsion would yield improved computa-
tional properties. Previous work has demonstrated that
replacing the LJ r−12 term with r−9 also has the potential for
improved accuracy.40 The remaining open question is if this
loss of computational convenience is justified by the gain in
accuracy. To answer this, an estimation for the computational
speed of both the Buckingham and LJ potentials used in three-
and four-site models across several computational platforms
can be seen in Table 4. The [ns/day] calculations in Table 4
are performed for a 30 Å3 box of water with hardware and
software configuration provided in the SI. For calculations on
GPU platforms (CUDA or OpenCL), the use of Buckingham
potentials instead of LJ incurs a small additional cost, resulting

Figure 9. Comparison of non-Coulombic contribution to the
potentials of TIP3P type models. The distance referenced here is
the interatomic distance between oxygen atoms: LJ-OG as the original
parametrization, LJ-OPT as the optimized model presented in this
work using the LJ potential, and Buckingham as the optimized model
presented in this work using the Buckingham potential. The inset
shows potentials plotted on a larger scale to highlight change in
repulsiveness.

Figure 10. Comparison of non-Coulombic contribution to the
potentials of TIP4P type models. The distance referenced here is the
interatomic distance between oxygen atoms: LJ-OG as the original
parametrization, LJ-OPT as the optimized model presented in this
work using the LJ potential, and Buckingham as the optimized model
presented in this work using the Buckingham potential. The inset
shows potentials plotted on a larger scale to highlight change in
repulsiveness.

Figure 11. Simplification of a hydrogen bond in water to the link
between OH first, OH-1, and second, OH-2, neighbor distances. It
can also be seen that the OO first neighbor (the distance between the
two red oxygen atoms) and the OH-2 s neighbor are in line.
Hydrogen is shown in white.
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in a < 10% performance decrease for CUDA (the fastest
platform overall). This is less expensive than adding an
interaction site (i.e., going from TIP3P to TIP4P) which
results in a 20% overall performance decrease. On the other
hand, the CPU platform is not well-optimized for the
Buckingham potential, as the performance decreases by 90%
relative to LJ. As such, the Buckingham potential could be
considered in place of or supplementary to adding additional
interaction sites.

■ CONCLUSION
The present work sought to improve the structural properties
of water models. This was achieved by addition of the RDF as
a target property to ForceBalance, a code for the systematic
optimization of force fields. Fitting with the OO, OH, and HH
experimental RDFs was carried out starting from the TIP3P
and TIP4P/2005 water models. Reparametrizations were
performed which overall achieved improved structural proper-
ties, but these models still carried some overstructuring in the
first OO RDF shell. To treat this, the LJ potentials in the
models were replaced with Buckingham potentials, and these
new models were again parametrized targeting the RDFs. The
new Buckingham based models were found to have the best
agreement with the experimental RDFs. TIP3P-Buckingham, a
new three-site model, achieved a reduction of 93, 47, and 57%
to the OO, OH, and HH RDF MSDs respectively when
compared to TIP3P. TIP4P-Buckingham, a new four-site
model, reached the best agreement for the OO RDF out of all
the models tested here with reductions of 98 and 44% for the
OO and OH RDF MSDs respectively but a percentage
increase of 20 for the HH RDF MSD when compared to
TIP4P/2005. This improvement to the RDFs MSD was
reflected in ΔSexcess where the percentage error in ΔSexcess for
TIP3P-Buckingham and TIP4P-Buckingham was 2 and 3%
respectively compared to 11% in both TIP3P and TIP4P/
2005.
In validation studies it was demonstrated that these

Buckingham models improve many nontargeted properties.
This improvement was particularly pronounced for TIP3P-
Buckingham which was demonstrated to have equal or greater
accuracy for all nonfitted properties calculated in this work
when compared to both the original and optimized LJ TIP3P
models. Of the four-point models the optimized LJ model
(TIP4P-LJ OPT) achieved improved accuracy forΔSexcess when
compared to TIP4P/2005 where as TIP4P-Buckingham
displayed improved or equal predictive power for κT, ΔGexcess,
and ΔSexcess when compared to TIP4P/2005. TIP4P-
Buckingham had more accurate calculations for all nontargeted
properties when compared to TIP4P-LJ OPT.

The above improvements to both fitted and predicted
properties demonstrate the utility of the Buckingham potential,
with TIP3P-Buckingham equaling or improving the accuracy
of the entire property set studied here compared to TIP3P and
TIP4P-Buckingham achieving improved accuracy, where a LJ
optimization could not, when compared to TIP4P/2005.
Overall, the TIP3P-Buckingham performs best achieving the
highest Score in a modified version of Vega’s scoring system36

of any models tested in this work. This is particularly
promising considering the small additional cost of replacing
LJ with a Buckingham potential on modern GPU hardware.
TIP4P-Buckingham achieved the highest Score of the
presented TIP4P models; however, this came at the sacrifice
of some of the nontargeted properties. A methodology was
outlined in the discussion that could more rigorously compare
a four-point Buckingham model to TIP4P/2005.
An accurate representation of the intermolecular geometry

of water molecules is important to generate accurate
thermodynamic properties41.42 The optimized Buckingham
potentials are less repulsive than both the original and
optimized LJ potentials, in agreement with predictions that
the LJ potential is too repulsive.24 This work could be
extended by investigating the source of the error in the second
OH peak; this may be addressable by using a flexible water
model and specifically fitting the OH RDF. In the optimization
of the models presented here, a methodology has been
described which can systematically fit computational to
experimental RDFs. This general methodology is expected to
be highly applicable to other molecular liquids. In this work
progress has been made to addressing the under- and
overstructuring of the water OO RDF and improvements in
ΔSexcess seen. However, considering the work of Lazaridis et
al.,11 the important orientational contribution to the total
entropy is not targeted. To address this the excess free energy
could be made a target of the parametrization; if the excess
enthalpy were also targeted, it would make the excess entropy
an implicit target of the parametrization. A major challenge
would be the sampling time required to calculate converged
values for the excess free energy changes, especially in the
context of an iterative optimization. One promising possibility
would be to employ a perturbative methodology to compute
the free energy change from the original force field to the
current set of parameter values being optimized; this would
remove the requirement of running a free energy calculation at
every optimization cycle and by extension allow the excess
entropy to be implicitly targeted.
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Potential Model for the Study of Ices and Amorphous Water: TIP4P/
Ice. J. Chem. Phys. 2005, 122, 234511.
(24) Soper, A. K. Joint Structure Refinement of X-ray and Neutron
Diffraction Data on Disordered Materials: Application to Liquid
Water. J. Phys.: Condens. Matter 2007, 19, 335206.
(25) Wheatley, R. J.; Price, S. L. An Overlap Model for Estimating
the Anisotropy of Repulsion. Mol. Phys. 1990, 69, 507−533.
(26) Buckingham, R. The Present Status of Intermolecular
Potentials for Calculations of Transport Properties. Planet. Space Sci.
1961, 3, 205−216.
(27) Wang, L.-P.; Chen, J.; Voorhis, T. V. Systematic Para-
metrization of Polarizable Force Fields from Quantum Chemistry
Data. J. Chem. Theory Comput. 2013, 9, 452−460.
(28) Eastman, P.; Friedrichs, M. S.; Chodera, J. D.; Radmer, R. J.
OpenMM 4: A Reusable, Extensible, Hardware Independent Library
for High Performance Molecular Simulation. J. Chem. Theory Comput.
2013, 9, 461−469.
(29) McGibbon, R. T.; Beauchamp, K. A.; Harrigan, M. P.; Klein,
C.; Swails, J. M.; Hernandez, C. X.; Schwantes, C. R.; Wang, L.-P.
MDTraj: A Modern Open Library for the Analysis of Molecular
Dynamics Trajectories. Biophys. J. 2015, 109, 1528−1532.
(30) Cooper, J.; London, E. N.; Dooley, R. The International
Association for the Properties of Water and Steam; International
Association for the Properties of Water and Steam: 2007.
(31) Rizzi, A.; Grinaway, P. B.; Parton, D. L.; Shirts, M. R.; Wang,
K.; Eastman, P.; Friedrichs, M.; Pande, V. S.; Branson, K.; Mobley, D.
L.; Chodera, J. D. YANK: A GPU-Accelerated Platform for
Alchemical Free Energy Calculations [Internet]. http://getyank.org
(accessed Aug 23, 2018).
(32) Chodera, J. D.; Shirts, M. R. Replica Exchange and Expanded
Ensemble Simulations as Gibbs Sampling: Simple Improvements for
Enhanced Mixing. J. Chem. Phys. 2011, 135, 194110.
(33) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of
samples from multiple equilibrium states. J. Chem. Phys. 2008, 129,
124105.
(34) Chodera, J. D.; Rizzi, A.; Naden, L.; Beauchamp, K.; Grinaway,
P. B.; Fass, J.; Rustenburg, B.; Ross, G. A.; Simmonett, A.; Swenson,
D. W. H. OpenMMTools 0.15.0 [Internet]. http://doi.org/10.5281/
zenodo.1205753 (accessed Aug 23, 2018).
(35) Shirts, M. R.; Mobley, D. L.; Chodera, J. D. Alchemical Free
Energy Calculations: Ready for Prime Time? Annu. Rep. Comput.
Chem. 2007, 3, 41−59.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00166
J. Chem. Inf. Model. 2018, 58, 1766−1778

1777

http://orcid.org/0000-0003-1579-2496
http://www.hpc.cam.ac.uk/
http://www.hpc.cam.ac.uk/
http://dx.doi.org/10.1093/acprof:oso/9780198556213.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780198556213.001.0001
http://getyank.org
http://doi.org/10.5281/zenodo.1205753
http://doi.org/10.5281/zenodo.1205753
http://dx.doi.org/10.1021/acs.jcim.8b00166


(36) Vega, C.; Abascal, L. F. Simulating Water with Rigid Non-
Polarizable Models: A General Perspective. Phys. Chem. Chem. Phys.
2011, 13, 19663−19688.
(37) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water
Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863−
3871.
(38) Lamoureux, G.; MacKerell, A.; Roux, B. A Simple Polarizable
Model of Water Based on Classical Drude Oscillators. J. Chem. Phys.
2003, 119, 5185−5197.
(39) Qi, R.; Wang, L. P.; Wang, Q.; Pande, V. S.; Ren, P. United
Polarizable Multi-Pole Water Model for Molecular Mechanics
Simulation. J. Chem. Phys. 2015, 143, 014504.
(40) Te, J. A.; Ichiye, T. Temperature and Pressure Dependence of
the Optimized Soft-Sticky Dipole-Quadrupole-Octupole Water
Model. J. Chem. Phys. 2010, 132, 114511.
(41) Huggins, D. J. Estimating translational and orientational
entropies using the k-nearest neighbors algorithm. J. Chem. Theory
Comput. 2014, 10, 3617−3625.
(42) Huggins, D. J. Benchmarking the thermodynamic analysis of
water molecules around a model beta sheet. J. Comput. Chem. 2012,
33, 1383−1392.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00166
J. Chem. Inf. Model. 2018, 58, 1766−1778

1778

http://dx.doi.org/10.1021/acs.jcim.8b00166

