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Effective core potential integral and gradient evaluations are accelerated via implementation on
graphical processing units (GPUs). Two simple formulas are proposed to estimate the upper bounds of
the integrals, and these are used for screening. A sorting strategy is designed to balance the workload
between GPU threads properly. Significant improvements in performance and reduced scaling with
system size are observed when combining the screening and sorting methods, and the calculations
are highly efficient for systems containing up to 10 000 basis functions. The GPU implementation
preserves the precision of the calculation; the ground state Hartree-Fock energy achieves good
accuracy for CdSe and ZnTe nanocrystals, and energy is well conserved in ab initio molecular
dynamics simulations. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4922844]

I. INTRODUCTION

In many chemical problems of interest, the important
chemical properties are mainly determined by the valence
electrons, while the core electrons remain almost unchanged.
The core electrons affect the potential field with which the
valence electrons interact via shielding of the nucleus and
the Pauli exclusion principle. As the computational cost of
ab initio calculations increases rapidly with the number of
electrons, computational complexity can be reduced if only
the valence electrons are treated explicitly while the effects of
the core electrons are approximated.

Hellmann1,2 and Gombas3 were the first to suggest re-
placing the interactions between valence and core electrons
with an effective potential. Phillips and Kleinman4 then pro-
vided a rigorous framework, where the valence Hamiltonian
contains a pseudo-potential term and a core-valence interac-
tion term. Since then, several attempts have been made in
order to simplify the rigorous formula.5,6 Today, the norm-
conserving7 and ultrasoft8 pseudopotentials, along with the
projector-augmented wave method,9 are essential to plane
wave density functional theory (DFT) methods, and the
ab initio effective core potential (ECP) first proposed by
Goddard,10 then improved by Melius,11 Kahn,12,13 and others,14

is widely used in DFT and quantum chemistry calculations
employing Gaussian basis sets.15 Calculations with ECPs often
achieve good agreement with all-electron calculations.16 In
addition, ECPs provide a simple way to incorporate relativistic
effects17 for heavy atoms, as the most important relativistic
effects are often associated with the core electrons, i.e., “scalar
relativistic effects.”

The applications of pseudopotentials are truly widespread
in quantum chemistry16 and condensed matter physics.18 They
include the study of structure, properties, and dynamics of
systems ranging from individual metal atoms19 and small

metal clusters20 to semiconductor nanocrystals and ferroelec-
tric perovskites.21 In molecular quantum chemistry, optimized
ECP coefficients and corresponding Gaussian basis sets for
the valence electrons have been developed for many ele-
ments in the periodic table.22–24 ECPs have been used in
conjunction with DFT in a wide variety of systems containing
metal atoms25 and verified to reproduce the heats of forma-
tion, ionization potentials, and spectroscopic properties of
transition metal complexes.26–29 Further applications include
the study of redox processes30,31 and reaction mechanisms
in inorganic catalysts32,33 and enzymes,34 often employing
ab initio molecular dynamics (AIMD) for sampling the ther-
modynamic ensemble and exploring the possible reaction
pathways. Also of note is recent work showing that ECPs can
be used to add dispersion corrections in DFT calculations35,36

or to solve the “link atom” problem in hybrid quantum me-
chanics/molecular mechanics (QM/MM) calculations.37–39

The fundamental building blocks for incorporating ECPs
into AIMD simulations are the ECP integrals and the corre-
sponding gradients. As a result, simulations on larger systems
for longer timescales can be enabled by accelerating computa-
tion of the ECP integrals and gradients. One approach to accel-
erate integral calculations is by implementation on massively
multi-threaded computing architectures, such as graphical pro-
cessing units (GPUs). The first practical application of GPUs
in quantum chemistry was reported by Ufimtsev and Mar-
tinez.40 Since then, GPUs have been successfully applied to
various types of quantum chemistry methods by accelerating
the construction of the Fock matrix41 and its gradient,42,43

which are the fundamental building blocks in the Hartree-
Fock (HF) method and an essential component of DFT. GPUs
have enabled AIMD simulations on small protein systems
comprised of more than 2000 atoms from the first three rows
in the periodic table.43 Due to the differences in hardware fea-
tures between traditional processors and GPUs, the calculation
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procedure must be carefully designed in order to efficiently
utilize the GPU’s computational power.

Another commonly used strategy to accelerate integral
calculations is through screening, which can reduce the under-
lying computational scaling with respect to system size. This
strategy is widely adopted for the four-center two-electron
integrals arising in the HF and DFT methods. The Schwarz
bound, which is derived from the Schwarz inequality, is most
commonly used to identify integrals that are small enough that
they can be safely neglected. It was first applied to electron
repulsion integral evaluation by Whitten44 and later introduced
into direct self-consistent field (SCF) methods by Haser and
Ahlrichs.45 By estimating upper bounds for integrals and dis-
carding the negligible ones, the scaling of computational effort
(with respect to system size) for evaluating four-center two-
electron integrals can often be reduced from fourth order to
second order. Even though the three-center one-electron ECP
integrals and gradients are much less numerous than four-
center two-electron integrals, an effective screening strategy
is still beneficial to avoid computation of negligible contribu-
tions.

In this paper, we describe the formulation and implemen-
tation of the ECP integrals and gradients on the GPU. The
structure of this paper is as follows. First, we briefly review the
general formulation of ECP integrals and the special features
of the integration scheme we adopted.46 Then, we discuss the
details of the GPU implementation, especially how to screen
and sort the ECP integrals in order to improve performance and
reduce scaling. Finally, we analyze the efficiency and precision
of the implementation using calculation results and timing data
from HF single point energy calculations and AIMD simula-
tions for a set of trial systems.

II. METHOD

A. ECP integrals and gradients

First, we briefly summarize the derivation put forth in the
paper of McMurchie and Davidson.47 The form of the effective
core potential operator for an ECP center located at the origin

is

UECP (r) = UL+1 (r) +
L
l=0

l
m=−l

|Slm⟩ [Ul (r) −UL+1 (r)] ⟨Slm| ,
(1)

where L is the largest angular momentum orbital appearing in
the core, and the angular functions Slm (θ,ϕ) are the normal-
ized real spherical harmonics. The radial potential functions
UL+1 (r) are expressed as linear combinations of primitive
radial Gaussian functions,

UL+1 (r) =
K
k=1

dkrnke−ζkr
2
. (2)

The radial difference potentials [Ul (r) −UL+1 (r)] are ex-
pressed in the same way with different sets of parameters dk,
nk, and ζk. For simplicity, the primitive Gaussian function in
the potential operator will be represented as

U (r; du,n, ζ) = durne−ζr
2

(3)

throughout this paper, where du represents the contraction
coefficient of the ECP primitive Gaussian function. This paper
focuses on quantum chemistry methods that use Gaussian basis
functions to describe the wavefunction; as such, the bra and ket
functions in the ECP integral ⟨φa |U (r) |φb⟩ are basis functions
centered at the atomic positions A and B and represented using
primitive Cartesian Gaussian functions by

φa (r) = da(x − Ax)ax
�
y − Ay

�ay(z − Az)aze−α(r−A)2, (4)

φb (r) = db(x − Bx)bx
�
y − By

�by(z − Bz)bze−β(r−B)2, (5)

where we employ a local coordinate system centered at the
position of the ECP center for each integral. The following two
types of integrals appear in ECP evaluations:

χab =

 ∞

0
r2U (r)


Ω

φa (r) φb (r) dΩdr, (6)

γl
ab =

 ∞

0
r2U (r)


Ω

φa (r) SlmdΩ

Ω′
φb (r) SlmdΩ′dr. (7)

The integral in Eq. (6) can be evaluated as

χab = 4πdudp

ax
ix=0

ay
iy=0

az
iz=0

*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-
(−1)La−iAax−ix

x Aay−iy
y Aaz−iz

z

×
bx
jx=0

by
jy=0

bz
jz=0

*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-
(−1)Lb− jBbx− jx

x Bby− jy
y Bbz− jz

z

×
i+ j
λ=0

Θ
ix+ jx, iy+ jy, iz+ jz
λ (rP) Qλ (2 + n + i + j, ζ ,η,RP) , (8)

where η = α + β, P = (αA + βB) /η, RP = |P|, rP = P/RP, dp = dadb exp

−αβ |A − B|2/η , and La = (ax + ay + az), Lb

= (bx + by + bz), i = (ix + iy + iz), j = ( jx + jy + jz). The angular factor Θ is defined as

Θ
i, j,k
λ (rP) =

λ
µ=−λ

Sλµ (θP, ϕP)


Sλµxi
ny

j
nzkndΩ, (9)
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where xn, yn, zn are Cartesian coordinates on the unit sphere, and θP, ϕP are the spherical coordinates of the unit vector rp. The
radial function is defined as

Qλ (N, ζ ,η,RP) =
 ∞

0
rNe−ζr

2
e−η(r−RP)2Kλ (2ηRPr) dr, (10)

where K is the modified spherical Bessel function of the first kind weighted by an exponential factor as

Kλ (z) = Mλ (z) e−z. (11)

Similarly, the integral in Eq. (7) can be computed as

γl
ab = 16π2dudadb

ax
ix=0

ay
iy=0

az
iz=0

*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-
(−1)La−iAax−ix

x Aay−iy
y Aaz−iz

z

×
bx
jx=0

by
jy=0

bz
jz=0

*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-
(−1)Lb− jBbx− jx

x Bby− jy
y Bbz− jz

z

×
l+i
λ1=0

l+ j
λ2=0

Ω
ixiyiz, jx jy jz
l,λ1λ2

(rA,rB)Tλ1,λ2 (2 + n + i + j, ζ ,α,RA, β,RB) , (12)

where the angular factor is defined as

Ω
ixiyiz, jx jy jz
l,λ1λ2

(rA,rB) =
l

m=−l

λ1
µ1=−λ1

Sλ1µ1 (θA, ϕA)

×


SlmSλ1µ1xix
n y

iy
n zizn dΩ

×
λ2

µ2=−λ2

Sλ2µ2 (θB, ϕB)

×


SlmSλ2µ2x jx
n y

jy
n z jz

n dΩ (13)

and the radial function is defined as

Tλ1,λ2 (N, ζ ,α,RA, β,RB)
=

 ∞

0
rNe−ζr

2
e−α(r−RA)2e−β(r−RB)2Kλ1 (2αRAr)

×Kλ2 (2βRBr) dr, (14)

where RA = |A| ,RB = |B|.
The analytical gradients can be evaluated by the same

method as the integrals. We first apply the translational invari-
ance relationship48 to differentiate only the Cartesian Gaussian
functions without differentiating the operator itself. The deriv-
ative of a Cartesian Gaussian function is given by linear combi-
nations of Cartesian Gaussian functions with the same basis
functions but different angular momentum quantum numbers,
as differentiation raises the maximum angular momentum for
a given basis function by one.

B. Screening method

Qualitatively, the radial integrals in Eqs. (10) and (14)
go to zero gradually as the centers of the basis functions and
the center of the ECP move away from each other. Using this
intuition, we develop simple upper bound estimates for the size

of ECP integrals that allow us to avoid calculating integrals that
are negligibly small.

An upper bound should be (1) easy to compute, (2) al-
ways greater than the integrals, such that no integrals can be
mistakenly screened out, and (3) as close to the integrals as
possible in order to effectively screen out small integrals. In
order to propose an upper bound formula that matches these
three criteria, first note that for all z > 0, the function values
of Kλ (z) are restricted to the interval [0,1]. Defining

κλ = max
z>0

Kλ (z) (15)

which decreases with increasing λ, the radial integral of
Eq. (10) is bounded from above by

Q̄λ (N, ζ ,η,RP)
= κλe−

ζη
ζ+η R2

P

 ∞

0
rNe

−(ζ+η)
(
r− η

ζ+η RP

)2

dr, (16)

where the integrand (with its prefactors) is an envelope func-
tion that is always higher than the integrand in Eq. (10). Simi-
larly, the radial integral of Eq. (14) is bounded by

T̄λ1,λ2 (N, ζ ,α,RA, β,RB)
= κλ1κλ2e

− αβ(RA−RB)2
ζ+α+β −

ζ(αR2
A
+βR2

B)
ζ+α+β

×
 ∞

0
rNe

−(ζ+α+β)
(
r− αRA+βRB

ζ+α+β

)2

dr. (17)

Both Eqs. (16) and (17) involve integrals of the envelope
function, which has the form

I (N,Rc, ρ) =
 ∞

0
rNe−ρ(r−Rc)2dr. (18)

The envelope function is used to determine the range of numer-
ical integration of the radial function, which is the most compu-
tationally expensive part of evaluating the overall integral. We
adopt the half-numerical ECP integrator proposed by Flores-
Moreno and coworkers,46 which uses a Gauss-Chebyshev
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FIG. 1. Outline of the GPU implementation. In the CPU sorting process, primitive pairs are organized into clusters based on which ECP atom they are closest
to. The wedges indicate sorting the primitive pairs within the same cluster by the absolute value of their exponents η from smallest to largest, then sorting the
primitive pairs with the same exponent by the absolute value of the coefficients dp from largest to smallest. In the GPU computing process, each thread loops
over ECP atoms. If the upper bounds estimated for all primitives on the current atom are below the predefined threshold, ScreenedFlag is set to TRUE and
calculations associated with the current atom are screened.

quadrature of the second kind49 to generate a set of abscissas
xk in the interval (−1,1). A linear mapping is then applied as

2rk = (rmax − rmin) xk + (rmax + rmin) , (19)

where the boundaries rmax and rmin are determined by the
envelope function as

rmax = Rc + c/
√
ρ, (20)

rmin = max
�
0,Rc − c/

√
ρ
�
. (21)

The dimensionless constant c sets the boundaries of the numer-
ical quadrature and should be chosen to cover the argument
range where the integrand is nonvanishing. We chose a value
of c = 5.0 in all of our calculations, which gives satisfactory
accuracy in the calculations as can be seen below. The Gauss-
Chebyshev quadrature naturally enables an adaptive quadra-
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FIG. 2. Two-dimensional histograms of different types of ECP integrals comparing their magnitudes to the corresponding upper bound estimates; test systems
used are Ru13, Cd11Se11, and Fe20 with the LANL2DZ ECP and basis set. “Fraction of Total Integrals” indicates the relative number of integral/upper bound
pairs in a given bin. Integrals with absolute value smaller than 1.0×10−25 Hartree are not shown. All populated bins are located above the diagonal line (blue),
indicating that the upper bound is always greater than the absolute value of the corresponding integral. When the integral threshold is set to 1.0×10−14 Hartree,
integrals in the grey regions are screened by the upper bound and not computed. Comparison of panels (b)-(d) shows that the bound remains effective as the ECP
angular momentum increases, although it does become less tight.

ture procedure that is described in detail in Refs. 38 and 39. In
our implementation, the number of quadrature points start at
7. At the beginning of each iteration, the number of quadrature
points increases from p to 2p + 1 by inserting a new quadrature
point between every pair of adjacent quadrature points from
the previous iteration and adding a new quadrature point on
each side. Therefore, the results of the p points from the pre-
vious iteration are reused in the new iteration. The iteration
terminates when convergence is reached with respect to a
predefined threshold, which we set to 1.0 × 10−12 a.u. in our
calculations. Generally, more quadrature points are required to
reach convergence for larger integrals, but only a small number
of quadrature points are necessary for small integrals.

The integrals in Eqs. (16) and (17) provide the upper
bounds of the two types of radial integrals; both integrals
have the form of Eq. (18), which is relatively expensive to
evaluate numerically. By studying the asymptotic behavior of
the integrand in the limits where

√
ρRc ≫ N or

√
ρRc ≪ N ,

we find that

I (N,Rc, ρ) <


π

ρ
*
,

1
√
ρ



1
2
√
π
Γ

(
N + 1

2

)1/N
+ Rc

+
-

N

(22)

which provides a simple way to estimate the contribution from
the radial integrals. The derivation of Eq. (22) is given in
Appendix A.

We obtained upper bounds for the angular contributions
to the integral following the derivations in Appendix B, which
provides the final upper bound formulas as

| χab | < 4π3/2 �dudp

�
Ξ̄
La,Lb

�
RA + qχ

�La
�
RB + qχ

�Lb

× qn+2
χ (ζ + η)−1/2e−

ζη
ζ+η R2

P, (23)
�
γl
ab

�
< 16π5/2 |dudadb | Λ̄l,La,Lb

�
RA + qγ

�La

×
�
RB + qγ

�Lbqn+2
γ (ζ + α + β)−1/2

× e−
αβ(RA−RB)2

ζ+α+β −
ζ(αR2

A
+βR2

B)
ζ+α+β , (24)

where qχ, qγ, Ξ̄La,Lb, Λ̄l,La,Lb are defined in Eqs. (B6), (B15),
(B9), and (B16) of Appendix B, respectively. The two upper
bound formulas in Eqs. (23) and (24) are simple to compute and
are evaluated before calling the integrators. If the upper bound
values fall below the user-defined integral threshold, then the
corresponding integral can be ignored.
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C. Sorting strategy and GPU implementation

As detailed in Sec. II B, due to the adaptive quadrature
method and the screening method we have adopted, larger
integrals are evaluated with more quadrature points than small
integrals, and integrals with upper bounds below the threshold
are not evaluated at all. However, the GPU hardware organizes
groups of threads into warps (groups of 32 threads on current
hardware) that are required to execute the same instructions. As
a result, the primitive Gaussians of the basis functions need to
be sorted properly in order to balance the workload.

The upper bound formulas in Eqs. (23) and (24) suggest
the factors that influence the size of the integrals. For a given
primitive Gaussian function in the ECP, Eq. (23) indicates that
the size of the χab integrals are influenced by three factors:
(a) the distance from the ECP center to the “center of mass”
of the primitive Gaussian pair (RP), (b) the exponents of the
primitive Gaussian pair (η), and (c) the coefficient for the
primitive Gaussian pair (dp).

The sorting strategy first groups primitive pairs by angular
momentum, which is the same strategy used in our GPU imple-
mentation of Fock matrix builds.41 Among the primitive pairs
that have the same angular momentum, we implement a three
level sorting strategy in order to account for the three factors
listed above. Suppose there are N ECP centers in a system.
First, we divide the primitive pairs into N clusters by assigning
each primitive pair to the ECP center which is the closest to
its center of mass, namely, the ECP center with the smallest
Rp. Next, primitive pairs within the same cluster are sorted
by the exponents η from smallest to largest. Finally, primitive
pairs within the same cluster that also have the same exponent
are sorted by their coefficients dp from largest to smallest. In
addition, when mapping the primitive pairs to the GPU threads,
we require that GPU threads within a warp should always
calculate primitive pairs from the same cluster. If the number
of primitive pairs within a cluster is not a multiple of the warp
size, then the last few threads are left idle.

For the integrals γl
ab

defined by Eq. (7), based on the
formulas defined in Eq. (24), a similar three-level sorting strat-
egy is adopted, except primitive pairs are assigned to the ECP
center with the smallest (αRA + βRB) /η instead of assigning
primitive pairs by Rp.

Figure 1 demonstrates the outline of our GPU implemen-
tation. Each GPU thread operates on a distinct primitive pair
and loops over the atom centers with ECPs. For each primitive
Gaussian on the ECP, we check if the upper bound exceeds
the threshold and evaluate the radial integral if so. If any
radial integrals were computed, we then compute the angular
factors and add the product of radial and angular integrals
into the overall integral. Calculation of the integrals is easily
parallelized over multiple GPUs on a single node by assigning
different groups of primitive pairs to each GPU. This code
has been implemented in the TeraChem quantum chemistry
package.

III. RESULTS AND DISCUSSION

To test the behavior of the proposed upper bound formula,
we performed computations of the ECP integrals and one-

electron matrix elements on Ru13, Cd11Se11, and Fe20. For
the systems we tested, the largest angular momentum orbital
appearing in the core is L = 2. In each case, we compared each
integral with its estimated upper bound. The distributions of the
ratio of the upper bounds to the numerically exact integrals are
shown in Figure 2. For all four types of integrals, the proposed
upper bounds are always greater than the integrals and the
upper bound is usually within a factor of 104 of the numerically
exact integrals. Tighter bounds are likely possible, but were
not found necessary for this work. The upper bounds for the
integrals χab, γ

0
ab

appear to be more accurate (i.e., tighter
bounds) than those for γ1

ab
, γ2

ab
, as can be seen by comparing

the upper and lower panels of Figure 2. One possible reason
for this behavior is that the orientation of the vectors A and B
becomes more important in these integrals as l increases. Since
our upper bound formula approximates the angular factors
using constants Ξ̄La,Lb and Λ̄l,La,Lb, its accuracy decreases as
l increases.

FIG. 3. Timings and scaling for computing ECP integrals (a) and gradients
(b). Three different GPU implementations of ECP integrals and gradients
have been tested: without sorting or screening methods (green diamonds),
only sorting but no screening (blue squares), and applying both sorting and
screening methods (red circles); the time for a single SCF cycle (black
triangles) is provided as a reference. The ECP integral screening threshold is
1.0×10−13 Hartree. Data are collected from calculations on CdSe nanocrys-
tals of increasing sizes. All calculations were performed on a quad core Intel
Xeon X5570 platform using one CPU thread and one GeForce GTX Titan
GPU.
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We used a central processing unit (CPU) implementation
of ECP integrals13 as a reference to test the accuracy of our
new GPU implementation. The difference in the Hartree-Fock
energy between the CPU implementation and the new GPU
implementation with screening is given in Figure S1 of the
supplementary material.50 The SCF energy differences are less
than 2.5 × 10−8 Hartree for all CdSe systems and ZnTe systems
tested up to 88 atoms. In addition, we compare the ECP matrix
elements of Zn44Te44 between the GPU and the CPU imple-
mentations in order to verify the accuracy. As shown in Figure
S2 of the supplementary material,50 the maximum error in the
matrix elements is 2 × 10−9 Hartree, and the average error is
3.6 × 10−12 Hartree.

The performance improvements due to the sorting and
screening methods are shown in Figure 3. The improvements
from sorting and screening are similar for integral and gradient
calculations. The sorting methods primarily reduce the pref-
actor of the computational cost, and the screening methods
effectively improve the scaling of the computational cost with
respect to system size. In addition, both integral and gradient
evaluations are much faster than a single SCF cycle, which in-
volves building and diagonalizing the Fock matrix. As at least
one, and often several, SCF cycles are normally required for a
given timestep in ab initio molecular dynamics, we thus view
further efficiency improvements as unnecessary at present.

Finally, we verified the consistency of the ECP integrals
and gradients by carrying out ab initio molecular dynamics
simulations on Cd4Se4. The initial 8-atom cluster was taken
from the crystal structure of wurtzite CdSe, and initial veloc-
ities were drawn from a Maxwell-Boltzmann distribution at
1500 K. We used a velocity Verlet integrator with a 0.5 fs time
step as implemented in TeraChem. As shown in Figure 4, the
fluctuation in total energy is much smaller than the fluctuations

FIG. 4. Energy as a function of time in an ab initio molecular dynamics
simulation on Cd4Se4 using Hartree-Fock and the LANL2DZ ECP and basis
set. The initial velocities were drawn from a Maxwell-Boltzmann distribution
at 1500 K. The velocity Verlet integrator with a 0.5 fs time step is used. The
flat behavior of the total energy shows that the total energy is conserved,
indicating consistency between the ECP integrals and gradients. The four
snapshots are taken at 0 ps, 5 ps, 10 ps, and 15 ps. Se atoms are colored
in yellow and Cd atoms are colored in cyan.

in the kinetic energy and the potential energy. The drift of the
total energy is 0.004 kcal/mol over 20 ps, corresponding to
less than 1.0 × 10−6 kcal/mol per degree of freedom per pico-
second or 0.0008% of the average kinetic energy over the simu-
lation time; these values compare favorably with previously
reported energy drifts employing similar integration methods
and empirical force fields.51 The conservation of total energy
demonstrates the accuracy of both the integrals and gradients
in our GPU implementation.

IV. CONCLUSIONS

By taking advantage of the properties of GPUs, we have
accelerated the computation of the ECP integrals and gradi-
ents. Simple upper bound formulas were proposed which
effectively screen negligible integrals and reduce the computa-
tional scaling with system size. The sorting strategy designed
specifically for our GPU implementation led to efficiency
improvements of more than 2× (as shown in Figure 3), pri-
marily because this strategy balances the workload among
threads.

Many interesting applications are enabled by the combi-
nation of this GPU ECP implementation and the highly effi-
cient GPU-based Fock matrix formation engine in TeraChem.
One future direction is to study heterogeneous catalytic sys-
tems, such as the methane conversion reactions through the
Fischer-Tropsch synthesis,52 usually carried out with iron cata-
lysts. A major challenge in studying heterogeneous catalytic
systems is the high number of electrons on metal clusters
that tremendously increase the computational expense. As the
GPU-accelerated ECP computations have greatly reduced the
computational cost, it is possible to increase the size of the
metal catalysts in the simulations in order to avoid edge effects
and study larger systems.

Another future direction is to implement multi-centered
valence electron effective potential (MC-VEEP), previously
proposed by Slavíček and Martínez.39 In this method, ECPs are
used to describe the link-atoms in QM/MM simulations such
that both the ground and the excited electronic states can be
treated correctly. It provides a rigorous treatment of short range
repulsion between the MM and QM regions while retaining
a low computational cost. In addition, it can potentially be
used as an ab initio coarse graining method. Since MC-VEEP
introduces a large number of ECPs to describe the QM/MM
interaction Hamiltonian, the GPU-based ECP implementation
provides a route toward the practical application of this method
to improve the accuracy of multi-scale simulations of large
systems.
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APPENDIX A: UPPER BOUND ESTIMATE
OF ENVELOPE FUNCTION INTEGRAL

Here, we develop an estimate for the envelope function in
Eq. (18),

I (N,Rc, ρ) =
 ∞

0
rNe−ρ(r−Rc)2dr (A1)

which will be used to derive the upper bound formulas for the
ECP integrals in Appendix B.

We first apply a variable transformation as t =
√
ρr , which

gives

I (N,Rc, ρ) = 1
ρ(N+1)/2

 ∞

0
tNe−(t−√ρRc)2

dt . (A2)

To get an upper bound for integral in (A2), we need to study
the behavior of the following integral:

f (N,a) =
 ∞

0
tNe−(t−a)

2
dt . (A3)

For N = 0, the upper bound is trivial because

f (0,a) =
 ∞

0
e−(t−a)

2
dt <

 ∞

−∞
e−(t−a)

2
dt =

√
π. (A4)

For N > 0, this integral can be written in terms of the confluent
hypergeometric function of the first kind 1F1 as53

f (N,a) = 1
2

e−a
2
(
aNΓ

(
N
2

)
1F1

(
N
2
+ 1,

3
2
,a2

)

+ Γ

(
N + 1

2

)
1F1

(
N + 1

2
,
1
2
,a2

))
. (A5)

Since 1F1 is no simpler than evaluating the entire radial integral,
we look for an alternative way to estimate the size of the
integral by examining its asymptotic behavior.

Returning to the form in (A3), we make a change of
variables x = t − a and write out the integral as a binomial
series. When a goes to infinity, we have

 ∞

0
tNe(t−a)

2
dt =

 ∞

−a
(x + a)Ne−x

2
dx

= aN
N
i=0

*
,

N
i
+
-

a−i
 ∞

−a
xie−x

2
dx ≈ aN

N
i=0

*
,

N
i
+
-

a−i
 ∞

−∞
xie−x

2
dx

= aN

( ∞

−∞
e−x

2
dx +

N (N − 1)
2a2

 ∞

−∞
x2e−x

2
dx +O

�
a−4�

)

= aN

(√
π +

√
πN (N − 1)

4a2 +O
�
a−4�

)
≈ aN

√
π. (A6)

On the other hand, when a goes to zero, we have ∞

0
tNe(t−a)

2
dt =

 ∞

−a
(x + a)Ne−x

2
dx

=

N
i=0

*
,

N
i
+
-

 ∞

−a
xiaN−ie−x

2
dx ≈

N
i=0

*
,

N
i
+
-

aN−i
 ∞

0
xie−x

2
dx

=

 ∞

0
xNe−x

2
dx + Na

 ∞

0
xNe−x

2
dx +O

�
a2�

=
1
2
Γ

(
N + 1

2

)
+

Na
2
Γ

(
N
2

)
+O

�
a2� ≈ 1

2
Γ

(
N + 1

2

)
. (A7)

We may use the large and small a limits to devise a simple func-
tion that interpolates between the two limits and numerically
show that it is larger than f (N,a) for all intermediate values.
One such function is the binomial series (x + y)N where xN

and yN are set equal to the limits,

f (N,a) < g (N,a) = √π*
,

(
1

2
√
π
Γ

(
N + 1

2

))1/N

+ a+
-

N

.

(A8)

The maximum value of N is (2 + 2L) for integral calculations,
and (3 + 2L) for gradient calculations, where L represents the
highest angular momentum of the basis functions. For basis
functions up to d-orbitals, the maximum N is 7. In Figure S3,50

we compare the integrated value of f (N,a) with g(N,a) for N
from 1 through 10.

Substituting t =
√
ρr and a =

√
ρRc into (A8) as we have

done in (A2), we now have the upper bound estimate of the
envelope integral as
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I (N,Rc, ρ) <


π

ρ
*
,

1
√
ρ


1

2
√
π
Γ

(
N + 1

2

)1/N

+ Rc
+
-

N

. (A9)

APPENDIX B: UPPER BOUND ESTIMATES FOR ECP INTEGRALS

We first derive an easily computable formula for the upper bound of χab which is defined in Eq. (8).
We begin by taking the absolute value of every potentially non-negative term in the summation. All the symbols

and indices used are consistent with the main text. From |a + b| ≤ |a| + |b|, we have

| χab | =

�������������������

4πdudp

ax
ix=0

ay
iy=0

az
iz=0

*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-
(−1)La−iAax−ix

x Aay−iy
y Aaz−iz

z

×
bx
jx=0

by
jy=0

bz
jz=0

*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-
(−1)Lb− jBbx− jx

x Bby− jy
y Bbz− jz

z

×
i+ j
λ=0

Θ
ix+ jx, iy+ jy, iz+ jz
λ (rP)Qλ (2 + n + i + j, ζ ,η,RP)

�������������������

≤ 4π
�
dudp

� ax
ix=0

ay
iy=0

az
iz=0

*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-
|Ax |ax−ix�Ay

�ay−iy |Az |az−iz

×
bx
jx=0

by
jy=0

bz
jz=0

*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-
|Bx |bx− jx�By

�by− jy |Bz |bz− jz

×
i+ j
λ=0

���Θ
ix+ jx, iy+ jy, iz+ jz
λ (rP)���Qλ (2 + n + i + j, ζ ,η,RP) . (B1)

Next, we may bring the components of displacement vectors, i.e., |Ax |, out of the sum by using |Aw | ≤ RA, |Bw | ≤ RB, where w
represents the x,y , or z component,

| χab | ≤ 4π
�
dudp

� ax
ix=0

ay
iy=0

az
iz=0

*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-

RLa−i
A

bx
jx=0

by
jy=0

bz
jz=0

*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-

RLb− j
B

×
i+ j
λ=0

���Θ
ix+ jx, iy+ jy, iz+ jz
λ (rP)���Qλ(2 + n + i + j, ζ ,η,RP). (B2)

Now, we define

Ξ
axayaz,bxbybz
i, j,λ (rP) =

ax
ix=0

ay
iy=0

az
iz=0

bx
jx=0

by
jy=0

bz
jz=0




*
,

ax

ix
+
-
*
,

ay

iy
+
-
*
,

az

iz
+
-
*
,

bx

jx
+
-
*
,

by

jy
+
-
*
,

bz

jz
+
-

× ���Θ
ix+ jx, iy+ jy, iz+ jz
λ (rP)��� δix+iy+iz, iδ jx+ jy+ jz, j




, (B3)

where we have introduced the Kronecker delta function. Equa-
tion (B2) can then be simplified as

| χab | ≤ 4π
�
dudp

� La
i=0

Lb
j=0

RLa−i
A

RLb− j
B

×
i+ j
λ=0

Ξ
axayaz,bxbybz
i, j,λ (rP)

×Qλ (2 + n + i + j, ζ ,η,RP) . (B4)

Applying the estimate for the radial integral defined in
Eq. (A9), we get

Qλ(2 + n + i + j, ζ ,η,RP)
< κλ


π

ζ + η
q2+n+i+ j
χ e−

ζη
ζ+η R2

P, (B5)

where

qχ =
1

√
ζ + η

τ +
ηRP

ζ + η
, (B6)

τ = max
0≤L≤La+Lb


1

2
√
π
Γ

(
2 + n + L

2

)1/(2+n+L)
. (B7)

The value of τ can be hard coded for all possible values of
n + La + Lb. Now, the expression in (B4) can be simplified as
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| χab | < 4π
3
2
�
dudp

� (ζ + η)− 1
2 e−

ζη
ζ+η R2

P

×
La
i=0

Lb
j=0

RLa−i
A

RLb− j
B q2+n+i+ j

χ

×
i+ j
λ=0

Ξ
axayaz,bxbybz
i, j,λ (rP) κλ. (B8)

Next, we search for the minimum constantΞ
La,Lb that satisfies

i+ j
λ=0

Ξ
axayaz,bxbybz
i, j,λ (rP) κλ ≤ Ξ̄La,Lb *

,

La

i
+
-
*
,

Lb

j
+
-

(B9)

for any (ax + ay + az) = La, (bx + by + bz) = Lb, 0 ≤ i ≤ La,
0 ≤ j ≤ Lb and for any unit vector rP. The searching procedure
is straightforward. For a given (La,Lb), we first optimize

Ξ̃
axayaz,bxbybz
i, j = max

rP

*
,

La

i
+
-

−1

*
,

Lb

j
+
-

−1

×
i+ j
λ=0

Ξ
axayaz,bxbybz
i, j,λ (rP) κλ (B10)

for all valid ax, ay, az, bx, by, bz, i, j. The largest value among
Ξ̃
axayaz,bxbybz
i, j is selected as Ξ̄La,Lb; since the search over rP

is done numerically over a dense grid of points, we multiply
the maximum value by a factor of 1.2 to ensure we are above
any numerical noise. The value of Ξ̄La,Lb can be hard coded.

Including binomial coefficients in the definition of Ξ
La,Lb

allows us to remove the final two summation symbols,

| χab | < 4π
3
2
�
dudp

�
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
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�La
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�Lb
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2 e−
ζη
ζ+η R2

P. (B11)

The derivation of the upper bound function for γl
ab

defined in
Eq. (12) follows a similar procedure as for χab. By applying
|a + b| ≤ |a| + |b| and |Aw | ≤ RA, |Bw | ≤ RB, we have

�
γl
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Similarly, by defining
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(B13)

and applying the estimate of the radial integral, we get

�
γl
ab

�
< 16π

5
2 |dudadb | e−
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where

qγ =
1

√
ζ + α + β

τ +
αRA + βRB

ζ + α + β
(B15)

the definition of τ is same as (B7).
We then search for the minimum constant Λ

l,La,Lb which
satisfies
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(B16)

for any (ax + ay + az) = La, (bx + by + bz) = Lb, 0 ≤ i ≤ La,
0 ≤ j ≤ Lb and for any unit vector rA and rB. The searching
procedure is similar to the procedure in χab.

This brings us to the final expression

γl
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(B17)
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