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Abstract

TeraChem was born in 2008 with the goal of providing fast on-the-fly electronic

structure calculations to facilitate ab initio molecular dynamics studies of large

biochemical systems such as photoswitchable proteins and multichromophoric

antenna complexes. Originally developed for videogaming applications, graphics

processing units (GPUs) offered a low-cost parallel computer architecture that

became more accessible for general-purpose GPU computing with the release of

CUDA in 2007. The evaluation of the electron repulsion integrals (ERIs) is a

major bottleneck in electronic structure codes and provides an attractive target

for acceleration on GPUs. Thus, highly efficient routines for evaluation of and

contractions between the ERIs and density matrices were implemented in

TeraChem. Electronic structure methods were developed and implemented to

leverage these integral contraction routines, resulting in the first quantum
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chemistry package designed from the ground up for GPUs. This GPU acceleration

makes TeraChem capable of performing large-scale ground and excited state cal-

culations in the gas and condensed phase. Today, TeraChem's speed forms the

basis for a suite of quantum chemistry applications, including optimization and

dynamics of proteins, automated and interactive chemical discovery tools, and

large-scale nonadiabatic dynamics simulations.

This article is categorized under:

Electronic Structure Theory > Ab Initio Electronic Structure Methods

Software > Quantum Chemistry

Structure and Mechanism > Computational Biochemistry and Biophysics

KEYWORD S

Electronic structure, ab initio molecular dynamics, graphical processing units

1 | HISTORICAL OVERVIEW

Graphics processing units (GPUs) are routinely used in consumer videogame hardware and can be viewed as highly
efficient data-parallel computer architectures. We began exploring the use of GPUs for electronic structure and first
principles dynamics calculations in the context of Sony PlayStation 2 consoles,1 before modern scientific-focused dis-
crete GPUs were available. Progress was hampered by the lack of a well-developed software ecosystem and the proprie-
tary nature of the PlayStation 2. In 2007, NVIDIA released the Compute Unified Device Architecture2 (CUDA)
framework that greatly simplified the development of general-purpose GPU software. Thus, we rapidly switched our
focus to CUDA-capable GPUs and the TeraChem package was born. Multiple order of magnitude performance advan-
tages (compared to some existing CPU-based electronic structure codes) were evident already in the first reports of the
GPU-based algorithms developed in TeraChem.3–6 About one order of magnitude of this performance advantage could
be explained by the computational power of the GPU (a performance differential that still exists today) and the remain-
der of these original gains came from the new data-parallel algorithms that were developed to use the unique streaming
multiprocessor architecture of GPUs effectively. Fortuitously, these initial efforts occurred just as Moore's law was
beginning to falter for CPUs. The majority of CPU performance improvements in recent years come from the introduc-
tion of optimized vectorization instruction sets (e.g., AVX2, AVX512) that require some algorithm redevelopment.

FIGURE 1 Performance of single point

energy and gradient calculations for TrpCage

(PDB ID: 2JOF, left), a BuckycatcherII complex

(center), and bovine pancreatic trypsin inhibitor

(PDB ID: 6PTI, right) over several generations of

GeForce and Tesla GPUs. The same Hartree–
Fock implementation is used on all GPUs and

speedups are reported compared to the GeForce

GTX 680 for each molecule. Each calculation

used a single GPU and single core of an Intel

Xeon CPU, either a 2.8 GHz E5-2680 (K80), a

2.5 GHz E5-2640 CPU (680/970), a 2.6 GHz E5-

2660v3 (P100), or a 3.4 GHz E5-2643v4

(1080Ti/V100)
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Figure 1 shows that the performance of TeraChem continues to increase significantly without any additional code opti-
mizations as each new GPU generation provides substantially more compute power and memory bandwidth.

GPUs reach maximum performance when working with single precision and when CPU-GPU memory transfers are
minimized.3,7 In fact, the earliest commodity GPUs aimed at the videogame market lacked hardware support for double pre-
cision arithmetic. Although this situation has changed and modern graphics cards can also handle double precision, they still
perform better in single precision due to the lower memory requirements and optimized hardware pipelines. This limitation
was not much of a hindrance for the application of GPUs to classical force-field molecular dynamics,8–12 where single preci-
sion can be sufficient. However, quantum chemistry typically requires double precision to handle the large values for the
total electronic energies and molecular orbital coefficients. Thus, balancing accuracy and performance in the face of preci-
sion limitations was an important consideration when developing GPU-based algorithms for electronic structure.

TeraChem expands the electronic wavefunction in a basis of contracted atomic orbitals ϕμ r
!� �

which are linear combi-
nations of atom-centered Cartesian Gaussian-type orbitals χk r

!� �
, often called primitive CGTOs (or just “primitives”):

ϕμ r
!� �

=
X
k

cμkχk r
!� �

, ð1Þ

χk r
!� �

=N x−XAð Þnx y−YAð Þny z−ZAð Þnz e−ζ r
!−R

!
A

�� ��2
, ð2Þ

where N is a normalization factor, R
!
A = XA,YA,ZA½ � is the coordinate of the Ath nucleus and the total angular momen-

tum of the CGTO is given as L = nx+ny+nz. The computational bottleneck in electronic structure codes is often the
evaluation of the two-electron integral tensor, also known as the electron repulsion integrals (ERIs), whose size for-
mally scales as O(N4) with the number of orbitals N. It is neither efficient nor desirable to compute the ERIs in isola-
tion; instead, various contractions of the ERIs with density matrices can be used directly. For example, Fock matrix
construction requires the following two integral contractions:

Jμν =
X
λσ

μν λσð Þð ÞPλσ , ð3Þ

Kμν =
X
λσ

μλ νσð Þð ÞPλσ , ð4Þ

where (μν| λσ) is an ERI over contracted atomic orbitals and Pλσ is a density matrix. Typically, Equation (3) is known
as the Coulomb matrix build (or “J-build”), and Equation (4) is known as the exchange matrix build (or “K-build”).

In 2008, Ufimtsev demonstrated the ability of GPUs to accelerate the direct evaluation of the Coulomb matrix,4

exchange matrix and subsequent Fock matrix construction,5 and analytic gradients for the self-consistent field (SCF)
procedure,6 utilizing a mixed precision scheme with all accumulations in double precision. It quickly became clear that
the GPU architecture was well-suited to provide fast J and K builds. As at least partially foreseen by Almlof,13 the for-
mal O(N4) scaling is reduced in practice to O(N2) by exploiting element sparsity, caused by the inherent locality of the
contracted AO basis, through presorting and screening the primitive AO pairs in the bra and ket of the primitive inte-
grals. Later, Fock matrix diagonalization was also parallelized through the use of MAGMA, a library for GPU-acceler-
ated linear algebra, for a fully GPU-accelerated SCF code.14 PetaChem, LLC was founded in 2009 by Ufimtsev and
Martínez to support the continued development of TeraChem based on these GPU-accelerated J and K builds, and the
first commercial version of the software was released in May 2010.

A dynamic precision scheme was introduced to maintain double precision accuracy while maximally exploiting the
speed of single precision arithmetic.7 On commodity videogaming cards, this can lead to as much as a fivefold increase
in performance, as shown in Figure 2. Even for scientific grade GPUs, this typically leads to a twofold performance
increase (largely because of the increased bandwidth when dealing with single-precision compared to double-precision
numbers). Accuracy of the J and K builds is controlled by two thresholds: integrals with a density-weighted Schwarz
bound smaller than the first threshold are neglected, while the second threshold determines which integrals are treated
in single or double precision in mixed/dynamic precision schemes. It can be helpful to think of this as three separate
levels of precision—the largest integrals are computed in full double precision, medium-sized integrals are computed in
single precision, and the smallest integrals are completely neglected (i.e., computed with no precision). With dynamic
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precision, the definitions of “large,” “medium-sized,” and “small” change during the course of the calculation to avoid
wasteful computation of overly precise integrals.

Titov used code generation techniques to develop optimal GPU architecture-specific kernels through d angular
momentum.15 Access to optimized routines for these ERI contraction operations also began influencing the develop-
ment and implementation of new post-SCF methods. Just as numerical linear algebra algorithms see performance gains
when cast in terms of optimized matrix–vector and matrix–matrix operations, the J and K builds in the non-orthogonal
Cartesian AO basis became two core electronic structure computational primitives due to their extremely efficient com-
putation on the GPU. All subsequent electronic structure implementations in TeraChem use these highly optimized
basic computational primitives by feeding generalized density matrices as inputs, therefore leveraging GPUs effectively
through the entire code. For example, Isborn and Luehr added configuration interaction singles (CIS) and Tamm–
Dancoff approximation time dependent density functional theory (TDA-TDDFT) by substituting nonsymmetric transi-
tion densities instead of the symmetric ground state densities shown in Equations (3) and (4).16,17 These methods were
later extended to the full TDDFT18 (also known as the random phase approximation, or RPA). In 2014, Hohenstein
developed the first fully AO-driven implementation of complete active space (CAS) methods including complete active
space self-consistent field (CASSCF) and floating occupation molecular orbital complete active space configuration
interaction (FOMO-CASCI).19–21 These methods were leveraged in excited-state dynamics simulations of processes of
several picoseconds including more than 600 quantum mechanical atoms.22

In 2015, Fales implemented a GPU-accelerated determinant-based direct configuration interaction (CI) program.23

In determinant-based CI, the wavefunction is expressed as a linear combination of all possible determinants for a given
number of active electrons and orbitals:

Ψj i=
X
I

cI ΦIj i: ð5Þ

Three electronic structure quantities were identified as core components in CI theory: generalized one- and two-particle
density matrices (OPDMs/TPDMs) and Hamiltonian-CI vector products (also called σ builds).

γpq =
X
IJ

cIcJ ΦI jÊpq ΦJj� �
, ð6Þ

Γpqrs =
1
2

X
IJ

cIcJ ΦI jÊpqÊrs−δqrÊps ΦJj� �
, ð7Þ

σI =
X
J

HIJcJ , ð8Þ

FIGURE 2 Comparison of the double and dynamic

precision schemes7 between Pascal-generation GeForce

and Tesla GPUs. The same Hartree–Fock
implementation is used on all GPUs and speedups are

reported compared to double precision on the GeForce

GTX 1080Ti for each molecule. Each calculation used a

single GPU and single core of an Intel Xeon CPU as

described in Figure 1
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where Êpq is an excitation operator from molecular orbital p to q and HIJ is an element of the CI Hamiltonian matrix.
Using the J, K, OPDM, TPDM, and σ building blocks, Snyder and Hohenstein developed an AO-driven implementation
of the coupled-perturbed state-averaged CASSCF (CP-SA-CASSCF) equations, enabling the evaluation of analytic deriv-
atives and nonadiabatic coupling elements with the state-averaged CASSCF (SA-CASSCF) method.24 These develop-
ments allowed TeraChem to perform the largest nonadiabatic dynamics simulation with SA-CASSCF potential surfaces
at the time of writing.25 The GPU-accelerated CI program and the AO-driven CP-SA-CASSCF were later combined by
Snyder and Fales to allow efficient SA-CASSCF calculations with large active spaces.26

Parallel developments in TeraChem include leveraging rank sparsity in the ERI tensor through the tensor hyper-
contraction (THC) framework.27–29 Kokkila-Schumacher and Song applied GPU-accelerated THC to several
perturbative methods, including second-order Møller-Plesset (MP2),30,31 scaled-opposite-spin MP2 (SOS-MP2),31–33 sec-
ond-order approximate coupled-cluster singles and doubles (CC2),34,35 and second-order CAS perturbation theory
(CASPT2).36 It is clear that the THC framework plays a similar role to the Coulomb and exchange matrix builds above;
specifically, THC provides a reduced-scaling pathway for different types of integral contractions over the ERI tensor.
Another parallel development is the introduction of two new potential electronic structure building blocks by Liu
involving primitive AO pair-surface charge Coulomb interactions for a GPU-based implementation of the conductor-
like polarizable continuum model (C-PCM).37

One decade after TeraChem's inception, these numerous developments have culminated in an electronic structure
package that enables large-scale ab initio calculations on workstation-class hardware. Recent development effort has
been placed in establishing well-defined interfaces and encapsulating the various GPU-accelerated computational prim-
itives into standalone libraries. Additionally, a new language-agnostic socket-based interface allows TeraChem to run
as a server for single-point calculations, providing access to fast electronic structure from high-level languages like
Python and the ability to deploy TeraChem in flexible workflows on modern distributed computing resources such as
commercial cloud platforms.38

2 | SCF AND DENSITY FUNCTIONAL THEORY METHODS

The Hartree–Fock (HF) or Kohn–Sham equations form the basis of all electronic structure packages; to that end,
TeraChem provides efficient implementations of the spin-restricted, spin-unrestricted, and spin-restricted open-shell
variants of HF and Kohn–Sham density functional theory (DFT). TeraChem works with atom-centered Gaussian basis
sets through d angular momenta and offers effective core potentials to account for core electrons in heavy atoms.39,40 It
can use either Cartesian or spherical basis representations (the latter by projection) for the atomic orbitals, and both
conventional and incremental Fock matrix41 constructions are available for HF and DFT.

TeraChem encompasses a variety of common exchange-correlation functionals, including local spin density approxi-
mation functionals, generalized gradient approximation functionals, hybrid functionals, and range-separated func-
tionals, and both static and dynamic (i.e., multigrid) grids are available for DFT. DFT+U42,43 as well as Grimme's D244

and D345,46 dispersion and geometric counterpoise47 corrections are implemented. All integral contractions are formu-
lated in a generalized global plus range-separated form; thus, TeraChem also provides solutions to the Coulomb-attenu-
ated Schrödinger equation.48,49 Density functional tight binding50–52 (DFTB) energies and gradients with the 3ob-3-1
Slater-Koster parameter set53–56 are available through an interface to the DFTB+ package.57 The GFN-xTB58 and
GFN2-xTB59 semiempirical tight-binding methods are available internally through a new semiempirical integral library,
which provides semiempirical equivalents to the aforementioned core ab initio electronic structure quantities.60

Robust behavior of the SCF procedure is often dependent on the quality of the starting wavefunction and conver-
gence acceleration algorithms. TeraChem provides the projection from a minimal basis calculation, the superposition
of atomic densities method,41,61 the maximum orbital overlap method,62 and several fragment-based schemes for gener-
ating trial wave functions. Pulay's direct inversion of the iterative subspace63 (DIIS) and a hybrid DIIS+ADIIS scheme64

are implemented as convergence accelerators. TeraChem also includes level-shifting65,66 and fractional occupation
number67 (FON) strategies to assist with convergence in difficult cases, and a FON annealing method is provided to
allow exploration in the space of possible electronic solutions. Orbital-free density matrix-based SCF calculations, that
is, without Fock matrix diagonalization, based on a GPU-accelerated implementation of Niklasson's canonical fourth-
order trace-resetting purification approach are available as well.68

TeraChem can also compute a host of electronic and vibrational properties, including dipole vectors, polarizability
tensors, electrostatic potentials (ESPs), electronic density maps, and bond order matrices. In addition to Mulliken and
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Voronoi deformation density69 population analysis, TeraChem is interfaced with NBO 6.070 for more advanced natural
bond order (NBO) and natural population analyses. Numerical Hessians can be used to perform thermochemical analy-
sis or sample initial geometries from either the Husimi or Wigner distributions (in the harmonic approximation at zero
or finite temperature) for dynamics simulations and are available for all methods with analytical gradients. Electronic
absorption spectra can be calculated with single- or multi-reference methods such as TDDFT and CASPT2. Addition-
ally, TeraChem Molden outputs from spherical basis SCF calculations can be used to run simplified TD-DFT71,72 calcu-
lations with the sTDA program73 to obtain UV-Vis absorption and electronic circular dichroism spectra.

3 | SINGLE REFERENCE POST-SCF METHODS

Excited state energies, gradients, and response properties can be calculated using TDHF, TDDFT, or their TDA variants,
CIS and TDA-TDDFT.16 Spin-flip74–76 variants of the latter two single excitation methods are also available, although
these methods are known to suffer from spin contamination issues.77 In order to overcome these issues, the hole–hole
TDA (hh-TDA) method, similar in spirit to the recent particle–particle TDA method,78–80 has recently been
implemented and shows promising results for nonadiabatic dynamics simulations.81,82 TeraChem provides energies
and analytic gradients for THC-MP231 and THC-SOS-MP231–33 through a THC module, with demonstrative timings
shown in Figure 3 for least-squares THC fit to ERIs in the molecular orbital basis (LS-THC-MO). Unlike density
fitting83–85 (which lowers the computational time but does not affect the scaling behavior for MP2), THC formally
reduces the scaling of MP2 from O(N5) to O(N4).30 The SOS-MP2 method86 neglects exchange-like terms to arrive at a
formal scaling of O(N4), and THC-SOS-MP2 further reduces this scaling to O(N3). Recently, a GPU-accelerated coupled-
cluster code has also been implemented in TeraChem, enabling coupled-cluster singles and doubles (CCSD) as well as
any method that can be written as a subset of CCSD diagrams.87

4 | MULTI-REFERENCE METHODS

TeraChem's direct determinantal CI library enables CASCI and CASSCF calculations with upwards of 109 determinants
on a single GPU, as showcased in Figure 4. Floating occupation molecular orbital CASCI20 (FOMO-CASCI) and CIS
natural orbital CASCI88 (CISNO-CASCI) are available as low-cost, robust alternatives to SA-CASSCF. TeraChem's
state-of-the-art atomic orbital basis SA-CASSCF19,24,26 and α-CASSCF89 implementations offer energies, gradients, and
nonadiabatic couplings with effective quadratic scaling with respect to the number of orbitals (assuming an active space
of constant size); as with the SCF methods, this scaling is due to the element sparsity present in the AO basis. Spin–
orbit couplings are available for the CASCI and CASSCF methods. Recently implemented electronic structure methods
include reduced rank full CI90 and time-dependent CASCI,91 while recent algorithmic advances include the use of

C60
900 AOs

Laninamivir
470 AOs

H2Pc
690 AOs

Fibril-forming
peptide
710 AOs

(min)

FIGURE 3 Computational wall times of THC-MP2

calculations, where bar colors represent different components, that

is, constructing the LS-THC-MO tensors, MP2 Coulomb-like

energies, and MP2 exchange-like energies. Calculations use cc-pVDZ

basis set, cc-pVDZ-RI auxiliary basis set for density fitting, and THC

grids optimized for cc-pVDZ. Timings were run using a single GTX

980 or 1080Ti GPU and a single thread of a 3.33 GHz Intel Xeon

X5680 CPU
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multiple GPUs for CI,92 mixed precision during σ builds,93 and an efficient configuration-state function to determinant
transform.94 TeraChem also offers density matrix renormalization group95 calculations through an interface developed
by Keller to a GPU-accelerated version of QCMarquis.96

Several methods that treat both static and dynamic correlation efficiently are incorporated within TeraChem. The
embedding-based CASCI/DFT hybrid approach developed by Pijeau and Hohenstein is implemented for FOMO-
CASCI, CISNO-CASCI and SA-CASSCF wave functions.97 Spin-restricted ensemble-reference Kohn-Sham (REKS) ener-
gies and analytic gradients are available for 2 electrons in 2 orbitals (REKS(2,2)), state-averaged REKS(2,2) (SA-REKS
(2,2)), and state-interaction SA-REKS(2,2) (SI-SA-REKS(2,2)), with nonadiabatic couplings also implemented for SI-SA-
REKS(2,2).98,99 Energies are available for the 4 electrons in 4 orbitals variants, with gradients only being implemented
for REKS(4,4) and SA-REKS(4,4).100 State-specific THC-CASPT2 is implemented using the supporting subspace tech-
nique to leverage the existing THC-MP2 routines, ensuring that THC-CASPT2 energies only scale as O(N4) with respect
to the number of molecular orbitals (for fixed active space size).36

5 | ENVIRONMENT EFFECTS

Although TeraChem can tackle large scale electronic structure calculations on desktop hardware, many systems of
interest, such as protein complexes, are simply too large for a purely ab initio treatment; as a result, TeraChem includes
a variety of methods to include environmental effects. Energies and gradients for implicit solvation101 are provided
through a GPU-accelerated conductor-like polarizable continuum model (C-PCM) implementation with the improved-
switching Gaussian approach.102 The development of C-PCM gave rise to two new core electronic structure operations
for one-electron integrals: the construction of c, which describes the solvent cavity surface charge-solute density inter-
action, and ΔFS, the solvent contribution to the Fock matrix.37 C-PCM is available in conjunction with HF and DFT in
the ground state, and state-specific and linear-response versions are available with TDA-TDDFT. Encapsulation of c
and ΔFS as building blocks, which may find additional use in constructing ESPs, restricted ESP atomic charge fitting,
or embedding schemes, is ongoing.103

Explicit MM waters can be modeled using internal implementations of the SPC, TIP3P, TIP4P, SWM4, SWM4-DP,
or SWM4-NDP force fields.104,105 More general QM/MM simulations can be carried out through a file-based AMBER
interface106 or with a statically linked OpenMM 7.0.107 Fragment-based approaches are an attractive alternative to QM/
MM; as a result, TeraChem also includes energies and gradients for an ab initio exciton model with both point-dipole
and full dimer couplings between monomers. The exciton model has been successfully applied to multichromophoric
structures such as light-harvesting system II (LH2), as depicted in Figure 5, enabling excited state ab initio molecular
dynamics (AIMD) with more than 3,000 atoms.108–110

FIGURE 4 Timings (in seconds) for hybrid QM/

MM calculations of myoglobin (PDB ID: 3RGK) at the

HF-CAS-(16,16)-CI/6-31G level of theory using a single

V100 GPU and a 3.4 GHz Intel Xeon E5-2643v4 CPU.

The various QM regions were carved out by including

entire residues within a given distance of the heme

cofactor. Note that the CASCI portion of the calculation

dominates for small QM sizes but remains fairly

constant and is heavily outweighed by the SCF

procedure for the entire protein
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6 | GEOMETRY OPTIMIZATIONS AND MOLECULAR DYNAMICS

TeraChem development follows the philosophy of separating electronic structure and driver (e.g., optimization, molecu-
lar dynamics) codes; however, several driver-level codes are included and available to users through the input file.
TeraChem is interfaced with DL-FIND111,112 to enable geometry minimizations and transition state searches and with
geomeTRIC113 to enable geometry minimizations with translational-rotational invariant coordinates; therefore,
TeraChem can perform standalone minimum energy pathway optimizations using nudged elastic band (NEB), climbing
image NEB (CI-NEB), and the simplified string method.114–117 Constraints on atomic position, bond length, angle, tor-
sion, and molecular translation/rotation degrees of freedom can be applied during energy minimizations.

Nonperiodic AIMD is available for NVE and NVT ensembles, and includes velocity rescaling,118 Nose-Hoover
chains,119 and Langevin120 thermostats. Niklasson's density propagation schemes are used to ensure time reversibility
of the electronic degrees of freedom,121,122 and a two-level multiple timestep scheme123 is supported with DFTB inner
timesteps. Time-dependent spherical, hemispherical, disk, and surface boundary conditions can be applied to all AIMD
simulations. TeraChem is interfaced with PLUMED124 to enable enhanced sampling techniques, such as metadynamics
and umbrella sampling, and has implementations for boxed molecular dynamics,125 adaptive hyperdynamics,126 and
steered molecular dynamics.127 Real-time interactive AIMD can be performed on systems with a few dozen atoms, as
demonstrated in Figure 6.128

Geometry optimizations and AIMD simulations enable several downstream quantum chemistry workloads. One
such workload is automated reaction discovery, where accelerated AIMD is first used to discover chemical reactions
and then geometry and MEP optimizations are used to refine chemical species and estimate barrier heights.129–131 For
reaction discovery, artificial forces are injected into a high temperature AIMD simulation to encourage chemical reac-
tions; often, these simulations use robust SCF convergence options such as the aforementioned FON annealing to
ensure the stability of the trajectories. During refinement, discovered species are optimized separately and minimum

FIGURE 5 The ab initio

exciton model with locally

excited (LE) and charge transfer

(CT) states applied to the 18

BChl-a chromophore B850

assembly of the light harvesting

system II (LH2). In recent work,

Li et al.110 benchmarked against

TDDFT and EOM-CC2

calculations of the supersystem

to show the robustness and

accuracy of the exciton model

FIGURE 6 Mechanochemical ring opening of benzocyclobutene using real-time interactive molecular dynamics with GFN2-xTB.

Dynamic bond orders and molecular orbitals show (a) the sigma bond in the reactant, (b) the bond rearrangement at the transition state,

and (c) the new π orbital in the product
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energy pathways are computed for each reaction. Combining thermodynamic information obtained during refinement
with transition state theory provides estimated rates for the construction of a kinetic model, enabling the simulation of
system evolution on a significantly longer timescale. Both the discovery and refinement stages of this workflow, shown
schematically in Figure 7, benefit heavily from GPU-accelerated electronic structure. As a result, one can use ab initio
calculations to glean insights into complex reaction networks such as those involved in the origins of life.129,132–134

The development of TeraChem enabled ground state dynamics135 and geometry optimization136 on entire proteins
at the HF and DFT levels of theory. These calculations made it possible for the development of methods that relied on
ab initio protein structures, such as crystallographic refinement137,138 and ligand binding affinities.139 Using TeraChem,
it is becoming routine to run QM/MM nonadiabatic dynamics simulations on proteins.140,141 Typically, the QM region
contains tens to hundreds of atoms, and several dozen trajectories can be run for hundreds of femtoseconds using a
multireference correlation method, as showcased in Figure 8.

An interface to the FMS90 code enables TeraChem to drive large-scale ab initio multiple spawning (AIMS) simula-
tions for studying photochemical processes with nonadiabatic dynamics.142 Unlike geometry optimization and AIMD,
nonadiabatic dynamics requires time-dependent electronic structure information to be exchanged between TeraChem
and FMS90. Wavefunction intermediates (e.g., molecular orbitals, CI vectors) are passed back to TeraChem after each
timestep to ensure continuity of electronic wavefunctions (especially consistency of the phase) over the course of the
trajectory. AIMS simulations are enabled for the CIS/TDA-TDDFT, hh-TDA, FOMO-CASCI, CISNO-CASCI, SA-CAS-
SCF, α-SA-CASSCF, and SI-SA-REKS(2,2) methods, and have been used to study systems such as provitamin D3,25 4-
(N,N-dimethylamino)benzonitrile,143 ethylene, methaniminium cation, malonaldehyde,144 ultrafast electron diffraction

FIGURE 7 Schematic overview of the ab initio nanoreactor

framework. Reaction networks are iteratively built up through three

phases: reaction discovery through accelerated molecular dynamics,

rate determination through minimum energy pathway optimization,

and running kinetic models to generate new concentration profiles

for discovery runs and pinpoint rate-limiting intermediates for

further refinement

FIGURE 8 TeraChem's capability to simulate ab initio

molecular dynamics for proteins as GPU hardware and algorithms

improve, from ground state dynamics and optimization in

2011135,136 to multireference nonadiabatic dynamics in 2019141
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experiments in cyclohexadiene145 and 1,2-diiodotetrafluoroethane,146 the retinal protonated Schiff base in cha-
nnelrhodopsin 2140 and bacteriorhodopsin,141 and cis-stilbene.147 Table 1 summarizes performance estimates for both
ground state and nonadiabatic molecular dynamics with the variety of electronic structure methods available in
TeraChem on modern scientific-grade GPUs.

7 | CONCLUSION

A decade ago, TeraChem was the first quantum chemistry code to leverage GPUs as an alternative computing architec-
ture for electronic structure. The construction of Coulomb and exchange matrices can be done extremely efficiently on
the GPU, especially when combined with AO basis sparsity and mixed precision techniques. As functionality was added
to TeraChem, efficient electronic structure calculations were enabled by reusing these electronic structure subroutines;
however, it has since become clear that these integral contractions were the first of several core building blocks for elec-
tronic structure, which now also include generalized OPDMs/TPDMs, sigma builds, and two cavity-density interactions.
Just as BLAS operations revolutionized numerical linear algebra, electronic structure methods can leverage GPUs effi-
ciently by feeding generalized density matrices into these highly optimized building blocks.

From a development standpoint, the rise of core electronic structure operations also provides a clear target for further
improvement. Code generation techniques can be used to provide support for higher angular momentum functions148,149

and will open up a whole new class of chemical systems for study with TeraChem. Hardening the interfaces will allow
more complex compositions of primitives and lead to new electronic structure methods. Lastly, and perhaps most excit-
ingly, there could still be further performance gains to be made by exploiting new hardware accelerators. The new focus for
GPU hardware development has shifted towards tensor cores and half precision support for machine learning applications
and real-time ray tracing for graphics rendering pipelines. Traditional GPU programming paradigms are also evolving.
NVIDIA's Volta generation enables greater control over individual threads in a warp and high bandwidth solutions like
NVLink and NVSwitch help mitigate expensive CPU-GPU or direct GPU-GPU memory transfers. Utilizing these new fea-
tures for electronic structure software remains an active area of research within the community. While GPUs were a clear
contender in the previous decade due to the close connection to linear algebra and rise of computer graphics, the next
decade is full of unique architectures that may be useful to computational chemistry. For example, one can imagine using
tensor processing units to compute a stack of matrix builds or using field-programmable gate arrays as a stepping stone to
develop an application-specific integrated circuit for electronic structure. The modularization strategy of identifying, encap-
sulating, and reusing core operations ensures that all electronic structure methods benefit immediately from any algorith-
mic development on these novel computing architectures.

TABLE 1 Performance estimates

for ab initio molecular dynamics based

on 50 fs runs

Method Performance (ps/day)

HF 26.02

B3LYP 12.74

CIS 4.41

TDA-TDDFT/ω(0.3)-PBEh 2.39

hh-TDA/ω(0.3)-PBEh 2.02

FOMO-CASCI(2,2) 4.56

SA2-CASSCF(2,2) 3.33

SI-SA-REKS(2,2)/ω(0.2)-PBEh 0.22

Note: Simulations used a 0.5 fs timestep with the 6-31G* basis set for cis-stilbene
(26 atoms/234 basis functions) on one NVIDIA Tesla V100 GPU and a single core
of an Intel Xeon 3.4 GHz E5-2643v4 CPU with TeraChem. All excited state
methods calculate two roots and use FMS90/TeraChem to run a single trajectory
basis function (TBF) on the first excited state with no adaptive timestepping.
AIMS simulations generally decrease the timestep in regions of nonadiabatic cou-
pling and usually involve multiple TBFs when nonadiabatic effects are modeled.
These factors can decrease the simulation throughput.
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