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Advanced models for water
simulations
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Molecular simulations of water using classical, molecular mechanic potential
energy functions have enjoyed a 50-year history of development, and much has
been learned regarding their parameterization and the essential physics that
must be captured in order to reproduce water properties across the phase dia-
gram and across system sizes, from the dimer to the condensed phase. While
pairwise-additive force fields using fixed, point charge-based electrostatics have
dominated this history owing to computational cost, their limitations in transfer-
ability are being recognized, owing particularly to the lack of many-body effects,
as well as an inherent difficulty in capturing quantum mechanical effects that
become important at short intermolecular separation. This has spurred an
impressive development of novel functional forms and parameterization
schemes to account for such effects, especially the leading many-body effect of
polarization. This review discusses recent efforts in the development of advanced
models of water, particularly with regard to important details of their parameter-
ization from quantum mechanical or experimental data, the development of
novel functional forms including machine learning-based models, and algo-
rithms that reduce the computational cost of polarization dramatically, permit-
ting them to potentially become competitive with pairwise-additive models as
the standby of condensed-phase simulation. These technical developments are
appraised based on their ability to impact numerical calculations on water, par-
ticularly the condensed phase, and it is hoped that this article provides a clear
connection between the essential physics captured by the model and their fitness
across a range of environments. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

In the development of force fields for molecular
simulation, gas-phase water clusters, liquid bulk

water, and the ice phases tend to be the first testbed
for whether these new approximations to molecular
interactions are a more accurate description of the
underlying potential energy surface. The level of
accuracy that is required will of course depend on
the application. For example, the characterization of
the mechanism for auto-ionization in water1,2 or the
proton transfer reaction3,4 by definition will depend
on ab initio molecular dynamics and models for
nuclear quantum effects.5–8 When electron rearrange-
ments and quantum fluctuations are not active or
central, then classical models can be robust for
almost everything else—conformational energies,
structural properties, as well as bulk transport
properties—since classical Hamiltonians implicitly
incorporate these quantum mechanical effects
through effective parameterization of the piecewise
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nature of the molecular mechanics (MM) functional
form as given in Eq. (1).

U =UVAL +UPAULI +UDISP +UELEC +UCP +UPOL +UCT

ð1Þ

For standard and widely available empirical water
force fields, the VAL(ence) or water geometric
nuclear framework is either held rigid or is composed
of stiff harmonic terms that permit only small fluctu-
ations around the equilibrium bond lengths and bond
angle, appropriate to the classical assumption where
bond making and bond breaking are prohibited. For
many years, classical water models have primarily
relied on the pairwise-additive approximation for
the remaining nonbonded interactions, if they are
represented at all. This is manifested by PAULI and
DISP(ersion) terms that represent the inherently
many-body exchange–repulsion and London disper-
sion forces, respectively, and which are often com-
bined to yield a simpler two-body potential such as
the Lennard-Jones or buffered 14-7 functional form
due to Halgren.9 The ELEC(trostatic) interactions
pertain to permanent electrostatics that are generally
described in terms of a truncated point multipole
expansion, typically using just point charges. But
some of the most recent larger gains in accuracy and
improved transferability have been the improvement
of general permanent electrostatics through inclusion
of higher-order permanent multipoles and incorpora-
tion of true many-body electrostatic effects such as
polarization (POL). We are currently witnessing the
emergence of charge penetration (CP) corrections to
permanent electrostatics, charge transfer (CT), and
many-body exchange and dispersion functions that
may improve our understanding and ultimate
description of hydrogen-bonding that is responsible
for water’s many remarkable properties.

In order to gain the full advantage of these
advanced classical potential energy surfaces for water,
there are three accompanying theoretical needs to ful-
fill their promise. The first is the ability to define an
appropriate functional form for these nonbonded
interactions; the translation of inherently quantum
mechanical interactions into a model functional form
is a trade-off among the practical considerations of
the computational expense, keeping the free parame-
ters to a minimum, and avoiding ‘overcounting’ at
short-range where interactions are less decomposable.
The second is how to effectively parameterize these
new functional forms for maximum transferability; at
present there are largely three competing, or perhaps
complementary, approaches for determining free

parameters—least squares optimization, machine
learning (ML), and fitting to the individual terms of
Eq. (1) through guidance from an energy decomposi-
tion of the quantum mechanical energy. Finally, the
increase in model complexity means that the compu-
tational cost of the energy and their force terms also
becomes more expensive, and new algorithms are
needed to solve them. In this review we consider the
current state of the art in these areas and where we
envision there will be future developments, illustrated
using a number of advanced models that are being
actively used in water simulations.

ADVANCED POTENTIAL ENERGY
SURFACES FOR WATER

Over the last ~10–15 years, next-generation water
models have been developed that incorporate many-
body effects that are largely lacking in standard
water force fields that assume pairwise-additivity of
the noncovalent interactions such as the early simple
point charge (SPC) models by Berendsen et al.10 and
the transferable intermolecular potential (TIP) models
introduced by Jorgensen et al.11 Next-generation
fixed-charge models included optimization of water
parameters under an Ewald electrostatic embedding
scheme such as TIP4P-Ew12 and followed later by
the TIP4P/200513 model. Incorporation of many-
body effects in principle enables more accurate
modeling of molecular properties across water’s
phase diagram, as well as affording greater accuracy
and transferability for heterogeneous aqueous solu-
tions and interfaces. It may seem like a daunting
prospect to sort through the host of different water
models. However, one can glean a few key observa-
tions on the relative merits of the different advanced
water models by paying attention to key essential fea-
tures of the functional form used, the level of quan-
tum mechanics (QM) theory and/or condensed phase
data on which the MM model is parameterized, and
a recognition that short intermolecular separations
where electron densities of the different species over-
lap is where QM effects, particularly due to
exchange–repulsion, start to dominate and become
more difficult for MM potentials to capture.14

Polarizable Models
Probably the most studied intermolecular interaction
that has been added to water force fields is the many-
body effect arising from POL.5,15–32 POL usually
receives special attention, as it decays more slowly than
dispersion, exchange–repulsion, or CT with a 1/R4

dependence, so that it is the next important level of
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electrostatics beyond the permanent electrostatic field.
There are plethoras of POL models for water, and
three main approaches have emerged to calculating
POL in empirical force fields: the fluctuating
charge method17,20,21; the Drude-oscillator
approach15,23,33,34; and the well-studied induced
dipole method.16,24,25,31,32,35–39 The fluctuating charge
and Drude oscillator approaches are unique from the
induced dipole model in that they are essentially
attempts to extend previous fixed, atom-centered
charge models to accommodate POL. By contrast, the
induced dipole model incorporates multipole moments
beyond the point charge in a formalism where the nat-
ural link between the higher order permanent multi-
poles and the polarizabilities is clear from the fact they
are terms of a Taylor expansion of the energy in the
electric field �E.
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where μ
! is the permanent dipole moment, α is the

dipole polarizability, and β is the dipole hyperpolariz-
ability. It should be noted that Drude models for
POL could also be used with higher order multipoles,
although it is not typical in most Drude POL models
for water, and many induced dipole models for water

only use point charges for the permanent
electrostatics.

The polarizable atomic multipole optimized
energetics for biomolecular applications (AMOEBA)
model is based on truncation of Eq. (2) at the second-
order term using atom-centered point multipoles up
through quadrupoles and point inducible dipoles,
which are damped at short-range by effectively smear-
ing out the induced dipole to avoid the ‘POL catastro-
phe’ whereby atomic sites at short separation
distances polarize each other to infinity. AMOEBA,
like many POL models, uses the Thole smeared charge
distribution for damping POL40:

ρ =
3a
4π

exp
−ar3ij

αiαj
� �1=2

 !
ð3Þ

where rij is the distance between atomic sites i and j,
αi and αj are their polarizabilities, and a is a dimen-
sionless width parameter that effectively controls the
strength of the damping.

Many-body POL has demonstrably improved
accuracy and transferability of advanced water models
by reproducing a number of water properties which
were not explicitly fit during the parameterization pro-
cess including viscosity, self-diffusion constant, and
surface tension at room temperature, as well as the ice
phases. Another case in point is the IR vibrational spec-
tra for liquid water,41 which we discuss as a more

FIGURE 1 | IR spectra of liquid water from experiment (black) and compared to different classical water models (a) using the SPC/Fw, TTM3-F,
and iAMOEBA models. Gray bars represent gas phase vibrational frequencies from experiment. Inset: Magnification of the far IR region (<1000
wavenumber) (Reprinted with permission from Ref 43. Copyright 2013 American Chemical Society). (b) THz experimental spectra (arbitrary units) of
pure bulk water compared to polarizable AMOEBA14 (solid red line) and when polarization interactions are removed (dashed red) (Reprinted with
permission from Ref 44. Copyright 2017 Royal Society of Chemistry).
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detailed example here. In simulations of the infrared
spectrum of liquid water, the bonding vibrations are
typically poorly reproduced by classical force fields due
to their lack of accounting for zero point energies
and/or CT. However, at the lower frequencies probed
by THz spectroscopy two prominent features at ~200
and ~650 cm−1 have been identified as collective inter-
molecular vibrations and librational motions of the
hydrogen-bonded network for water, respectively. For
many years, traditional classical force fields based on
nonpolarizable force fields struggled to reproduce in
particular this intermolecular hydrogen-bonding vibra-
tional signature, illustrated using the SPC/Fw water
model shown in Figure 1. When analyzed by ab initio
molecular dynamics methods using the well character-
ized PBE functional—which was able to find agree-
ment with the far infrared feature of the experiment—
this failure of classical force fields was thought to be
attributable to lack of CT.42 However, classical water
models that include POL are certainly capable of cap-
turing this feature, also shown in Figure 1 for the
TTM3-F (discussed in more detail below), and the
iAMOEBA and AMOEBA14 models (see Box 1). The
primary point is that no dynamical quantities were
included in the parameter training set of iAMOEBA
(which only directly captures direct POL)43 and
AMOEBA14,32 but were reproduced nonetheless, con-
firmed by showing that the peak at 200 cm−1 disap-
pears altogether when POL interactions are turned off
in the simulation of the AMOEBA14 water model.

The iAMOEBA model43 with optimized param-
eters met or exceeded the AMOEBA03 model in
most gas-phase and condensed-phase properties
(Figure 2); an extended suite of validation studies
showed that iAMOEBA predicts a relatively accurate
melting point (261 K) and qualitatively correct phase
diagram of high-pressure ices. However, the
iAMOEBA approximation leads to a reduction of
accuracy in the binding energies of larger water clus-
ters, where the total binding energy is underestimated
by ~7% on average compared to AMOEBA03 which
predicts a smaller error of ~4%.31 ForceBalance was
also applied to reparameterize the mutual POL
AMOEBA03 model using the iAMOEBA data set,
resulting in the AMOEBA14 model, which yielded
overall improved agreement with experimental prop-
erties.32 We also developed the uAMOEBA single-site
polarizable water model45 in which the multipoles
and induced dipoles were removed from the H
atoms, and the remaining parameters optimized using
ForceBalance and the same data set; the removal of
POL degrees of freedom from H atoms has precedent
in the point dipole39 and Drude model literature.23

The uAMOEBA water model features an

improvement in the computational efficiency of 3–5
with an accuracy comparable to AMOEBA03, which
could be a promising avenue toward speeding up bio-
molecular simulations that incorporate POL.45

Ab Initio-Derived Water Potentials for the
Condensed Phase
Some of the earliest ab initio-derived water potentials
are based on so-called fragment methods, exemplified
by the effective fragment potential (EFP)46–52 and
X-pol,53–55 in which the MM parameters are derived
from QM calculations on individual subsystems such
as monomers, dimers, and so on. X-pol relies on a
Hartree product of monomer wavefuctions calculated
using a semi-empirical single-determinant level of the-
ory, with the addition of one-electron terms arising

BOX 1

DIRECT AND MUTUAL POL WATER
MODELS BASED ON THE AMOEBA
MODELS

The AMOEBA03 water model, developed by
Ren and Ponder,24 has a functional form that
includes: full intramolecular flexibility with
parameters fitted to gas phase vibrational fre-
quencies, a buffered 14-7 potential centered on
both oxygen and hydrogen atoms with parame-
ters fitted to reproduce gas-phase and liquid-
phase properties, permanent atomic multipoles
up through quadrupoles computed via distrib-
uted multipole analysis, and atomic polarizabil-
ities that incorporates Thole damping factor, in
which water cluster binding energies were
fitted for dimer structures up through the hex-
amer. In validation studies, AMOEBA03 pro-
duced good although not consistent agreement
with experiment for thermodynamic, kinetic,
and structural properties of liquid water. The
iAMOEBA model,43 introduced 10 years later,
revisited the optimization of AMOEBA parame-
ters with two important modifications: the
direct POL approximation was introduced,
thereby omitting all interactions among
induced dipoles and removing the need for SCF
cycles, and the ForceBalance program was used
to optimize the parameters using a more exten-
sive experimental and ab initio data set. As the
direct approximation changes the form of the
interaction, reparameterization of the model
was needed to recover quantitative accuracy.
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from the charges of the other fragments, which them-
selves are iterated to self consistency. The Hartree
product of monomers disobeys anti-symmetry, and a
two-body correction from dimer calculations is added
to account for the missing exchange; in the context of
the X-pol water model, XP3P, a Lennard-Jones term
is added to account for missing exchange and disper-
sion. X-pol gives excellent agreement with ambient
densities and heats of vaporization, adequate diffu-
sion constants, but reports a excessively high dielec-
tric and a density-versus-temperature profile that is
similar to that of the fixed charged TIP models.54

EFP similarly obtains its MM parameters
directly from ab initio calculations, where the nonco-
valent terms among the rigid fragments consist of
electrostatics, POL, and exchange–repulsion derived
from Hartree-Fock calculations on the monomers,
but in its modern form has been supplemented by
charge-transfer and dispersion, the later calculated at
the MP2 level of theory. The electrostatics and POL
are described by point distributed multipoles at atom
centers and bond midpoints and polarizability ten-
sors centered on localized molecular orbital cen-
troids. Electrostatics are damped by an exponential
term to account for CP, and POL is similarly damped
to account for exchange–POL coupling. Exchange–
repulsion is expressed with a term based on the
orbital overlap between monomers and many-body
charge-transfer is approximated to be a pairwise-
additive function of the orbital overlap and potential
exerted by one monomer on the other. Lastly, disper-
sion is described using a series of Cn/r

n terms where
n ≥ 6 and the Cn coefficents are derived from
frequency-dependent polarizability tensor calculation
on the fragments, and exchange–dispersion coupling

is accomplished through a damping term that is a
function of the orbital overlap.48 Few condensed
phase properties have been reported for EFP, primar-
ily radial distribution functions (RDFs), although
recently EFP was shown to yield a melting tempera-
ture that was too high.56

Continued advances in computational power
have enabled the development of force fields with less
empiricism and based on more accurate levels of QM
theory, namely the gold standard for electron
correlation-coupled cluster singles, doubles, and per-
turbative triples, CCSD(T), extrapolated to the com-
plete basis set (CBS) limit. This class of models began
with the series of Thole-type models (TTM) by
Xantheas et al.22,57–61 Here, and in the models that
follow, two- and three-body MM terms are fit to the
corresponding CCSD(T)/CBS terms calculated on the
water dimer and trimer energy surfaces. The TTM
functional forms are relatively simple, with POL
based on isotropic polarizabilities and Thole-type
damping, electrostatics using exponentially damped
point charges without higher-order multipoles, a
Lennard-Jones term for the exchange–repulsion and
dispersion, and the flexible intramolecular degrees of
freedom parameterized from the spectroscopically
accurate functional form developed by Partridge and
Schwenke.62 Both TTM3-F and TTM4-F achieve
high accuracy on a number of condensed-phase
water properties, through benefit of a cancellation of
errors in their two- and three-body terms.

More recently, the TTM approach of fitting
two- and three-body terms to the corresponding two-
and three-body CCSD(T)/CBS energies has been
extended by others, and is exemplified by the CC-
pol,63–67 WHBB,68–71 HBB2-pol,72 and most recently,

FIGURE 2 | Comparison of water properties of iAMOEBA water model against experiment. (a) Arrhenius plot of self-diffusion constant of
liquid water versus temperature, which includes a comparison to AMOEBA03, (b) liquid–vapor coexistence curve, and (c) vapor pressure curve of
the iAMOEBA model (Reprinted with permission from Ref 43. Copyright 2013 American Chemical Society).
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MB-pol.73–76 Like the TTM models, these rely on iso-
tropic polarizabilities with Thole-type damping with
point charges for the electrostatics. The first improve-
ment is more trivial in the inclusion of a dispersion
term with Tang-Toennies damping, in contrast to the
undamped term of the TTM models. However, the
major unique feature is in how the short-range effects
are captured. Presumably, these are the effects that
predominate in the regime of intermolecular orbital
overlap, ascribed to short-ranged effects like
exchange–repulsion, CP, and CT that have historically
proved difficult to describe using MM functional
forms. In contrast to the usual approach of assigning
a distinct term to each of these types of short-ranged,
many-body terms, the short-ranged two- and three-
body effects are described collectively by two- and
three-body permutationally invariant polynomial
terms consisting of Born–Mayer-like exponential
monomial terms and/or Born–Mayer exponential
terms multiplied by r or r−1.73–76 The two- and three-
body polynomials can comprise hundreds or even
greater than one thousand monomial terms. More-
over, instead of simple dependence on distance
between atom centers, additional interaction centers
are optimized, effectively accounting for anisotropy in
a manner that does not assume any a priori notions of
where exactly the sites should be located. Lastly, as
these terms are meant to capture short-ranged effects,
they are only calculated in a small distance range and
are smoothly switched off within a cutoff region,
beyond which only the simple isotropic Thole-type
POL, point-charge electrostatics, and simple two-body
dispersion are in effect.73–76

At this point, it behooves us to examine the
salient features of models like TTM and MB-pol that
recommend their use. First and foremost is the
parameterization based on CCSD(T)/CBS. However,
for MB-pol a central new concept is the recognition
that formulations of the short-ranged two- and three-
body energetics are difficult to capture with single
terms corresponding to specific interactions (such as
in Eq. (1)), but rather may be better handled by a
sum of terms, each of which has the roughly correct
exponential dependency (sometimes multiplied by an
r-dependency) that follows the general trend of how
short-range terms decay in general. In addition,
anisotropy is captured through the use of additional
sites, but they are not assigned a priori based on pre-
conceived notions or chemical intuition. Therefore,
the long-ranged electrostatics, POL, and dispersion
may be kept simpler, because the anisotropy is recog-
nized as a short-ranged effect that is suitably cap-
tured in the short-ranged terms. At present, MB-pol
achieves unprecedented accuracy in describing water

properties from the dimer to the condensed phase
and is perhaps one of the all-around best MM water
models to date, albeit at a cost that is ~50× that of
the AMOEBA force field. However, the large number
of polynomial terms in the short-ranged part of the
potential will inhibit transferability and application
to heterogeneous solution systems, thereby requiring
a system-by-system formulation of the MB-Pol poten-
tial. The first aqueous system of water-halide solu-
tions for MB-Pol has been completed with notable
success,77 but patience will be required for extensions
of MB-pol to any arbitrary system of interest.

The Future of Ab Initio-Derived Water
Potentials
There exist a number of ab initio-derived models
where the parameters are prescribed a priori as in the
more familiar empirical force fields utilizing Eq. (1),
including the anisotropic site-site potential (ASP),78,79

non-empirical molecular orbital (NEMO),80–82 sum
of interactions between fragments ab initio computed
(SIBFA),83–85 and GEM (Gaussian electrostatic
model)14,86 models. Compared with the nearly 50-
year history of empirical fixed-charge force fields that
started with Lifson and Warshel,87 these are in their
infancy. The original ASP model79 is parameterized
from dimer calculations using intermolecular pertur-
bation theory (IMPT), in which electrostatics are
described with atom-centered point distributed multi-
poles, and polarizabilities with atom-centered aniso-
tropic polarizabilities. Owing to the parameterization
from dimers, exchange–repulsion, charge-transfer,
and dispersion are described by pairwise-additive
terms, but are unique in their approach to capturing
short-range anisotropy using orientation-dependent
shape functions. The NEMO potential, parameterized
from HF and MP2 data, similarly models its electro-
statics through distributed point multipoles through
the quadrupole, and POL through anisotropic polar-
izability tensors, and additionally includes quadrupo-
lar polarizability. Dispersion is calculated using a
damped Cm/R

n potential, where 6 ≤ n ≤ 8 and the Cn

are expressed as explicit functions of the polarizabil-
ities. The exchange–repulsion is modeled with a fairly
simple, isotropic Born–Mayer exponential form.88,89

The SIBFA model has a very sophisticated func-
tional form consisting of permanent point multipole
electrostatics, anisotropic POL with short-range atten-
uation to capture exchange–POL coupling, elaborate
extensions to the description of many-body exchange–
repulsion, and many-body charge-transfer with a func-
tional dependency on the electrostatic potential (itself a
function of the permanent electrostatics and many-
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body POL).85 A recent extension of SIBFA is the
GEM,14,86 which contains the same terms as SIBFA,
but instead recognizes the finite extent of electron den-
sities, replacing the point multipole description with
true static electron densities. In turn, the repulsion term
is modified from the original SIBFA as well, and it is
taken as the overlap between these densities. In the
most recent developments by the Schmidt group,90 the
overlap-based prescription of exchange–repulsion has
been extended and applied to the damping of the elec-
trostatics and POL with the rationale that short-range
damping is a manifestation of overlap between the
electron densities of the separate species. In contrast to
the Born–Mayer type functional forms with only an
exponential dependency, these newer ‘beyond Born–
Mayer’ forms are functionally dependent on an expo-
nential multiplied by a quadratic polynomial in the
interatomic separation r.90

The aforementioned ab initio-derived models are
only starting to be tested in their ability to reproduce
condensed-phase properties of water, since the
increased fidelity to the true electron structure comes
with increased computational cost. Some of these, such
as SIBFA, have not even been enabled for molecular
dynamics owing to the lack of analytic gradients until
very recently (personal communication). Recently,
GEM has been enabled for MD by utilizing the
AMOEBA description of POL and dispersion, GEM*,
yielding a model that unfortunately predicts an under-
structured oxygen–oxygen RDF and an overstructured
oxygen-hydrogen RDF.37 On a positive note, GEM*
was able to correctly predict trends in the relative ener-
gies of water hexamers.14 It is expected that once ana-
lytical gradient terms appear for all terms in the SIBFA
potential, including its native model of POL, disper-
sion, and charge-transfer, that these terms will be in
turn incorporated into the original GEM, enabling a
calculation of condensed-phase water properties. Nev-
ertheless, it should be emphasized that these are early
results, and these models have not had the benefit of
years of fine-tuning that empirical pairwise-additive,
fixed-charge force fields have enjoyed.

OPTIMIZATION APPROACHES TO
DETERMINING FREE PARAMETERS

All empirical force fields for water to date inevitably
suffer from inaccuracies in the simplifying assump-
tions underlying the classical functional forms that
are used, lack of transferability of parameters, failure
to implicitly account for missing effects in the poten-
tial, and other shortcomings inherent in the fact that
force fields are empirical in nature and rely on fitting

to a mixture of quantum mechanical and sometimes
condensed-phase experimental data. The success of
molecular mechanical force fields for water, espe-
cially the simplest pairwise-additive ones, rests on a
delicate cancellation of errors among the energetic
terms, and an ability to implicitly account for the
missing many-body effects such as charge-transfer,
and true many-body Pauli repulsion and dispersion.
Despite many examples in which advanced potentials
for water succeed due to their improved physics,
there are also areas of failure in which they are out-
performed by their fixed charge counterparts.

While on the face of it such failures of
advanced potentials seem to be at odds with what
should be a more accurate and transferable model, in
fact there are several reasons for the current state of
affairs. One is the sheer amount of time that has been
devoted to optimizing the pairwise additive classical
force fields, and secondly their greater computational
tractability permits the necessary sampling to pin-
point their problems. In addition, (1) the advanced
functional forms are more difficult to parameterize,
since, although they are typically parameterized in an
automated fashion targeting QM data from clusters,
they also rely on some hand-tuning of their parame-
ters to extrapolate the model to reproduce bulk prop-
erties, (2) they are fit to data like total energies or
electrostatic potentials that are only indirectly con-
nected to their piecewise functions, and (3) they typi-
cally rely on but do not demonstrate how
cancellation of errors occurs among the molecular
interactions accounted for (exchange–repulsion, elec-
trostatics, and POL) or that are missing (CT and
CP). Thus, the optimization approach of their param-
eters is a critical area for success of next generation
water models.

Energy Decomposition Analysis for
Improving Water Models
It would be highly useful guidance for force field
parameterization to benchmark against a theoretical
method that is able to ascertain the quality of indi-
vidual terms of the force field as per Eq. (1). Energy
decomposition analysis (EDA)28,91–99 affords a way
to determine the relative contributions of several
physically meaningful nonbonded energy terms out
of the QM interaction energy, e.g., permanent elec-
trostatics, Pauli repulsion, POL, dispersion, and so
on. Although the asymptotic components of any
EDA method are uniquely defined100 for a given
electronic structure method, their definitions in the
overlapping regions (i.e., water–water interactions in
the first solvation shell for example) will differ
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among different decomposition approaches. How-
ever, any well-defined EDA can yield a reasonable
and chemically sensible separation of energy compo-
nents in the overlapping regime—exactly what is
required for reasonable force field terms in the same
regime. Therefore, by comparing the corresponding
terms between an EDA scheme and a force field,
one can obtain insight into the strengths and weak-
nesses of MM formulations, and further develop
revised functional forms and/or parameters that in
principle should yield substantial improvement in
water properties.

There are already successful efforts in this
direction such as the EFP method,46–50,52 and some
of the most popular EDA schemes are based on a
perturbative approach via symmetry-adapted pertur-
bation theory (SAPT)101–107 that are guiding force
field parameters for AMOEBA. In fact, the parame-
terization of some of the more advanced force fields
such as SIBFA and GEM are often guided by EDAs
such as the restricted variational space (RVS),108

constrained space orbital variation (CSOV),109,110

and most recently SAPT90,101,102,104,105,107,111

methods. More recently, a variational formulation,
such as the second-generation absolutely localized
molecular orbitals (ALMO) using density functional
theory (DFT),10,80,104 are currently being used to
guide next generation water (and other chemical)
potential energy surface models. We believe that
using variational EDAs offers advantages over the
popular SAPT such as simplicity of terms and
avoidance of perturbation theory, and, when used
with accurate low-cost density functionals,112–114 is
also very computationally efficient. Box 2 describes
how ALMO-EDA was used to analyze how well the
AMOEBA water model reproduces the two-body115

as well as three-body116 energies in the distance
scans for the genuinely many-body terms of QM
energetics, including modified Pauli repulsion, dis-
persion, POL, and CT contributions (Figure 3). As
AMOEBA’s only many-body term arises from
Thole-damped POL, the analysis must address not
only how successfully it renders agreement with the
corresponding ALMO-EDA POL, but whether the
two- and three-body sum of ALMO’s modified Pauli
repulsion, dispersion and CT terms are captured by
three-body POL or whether it is spread ‘incoher-
ently’ across, e.g., the two- and three-body POL
contributions or accounted for in strictly two-body
terms. This illustrates how future models might be
tuned when EDA decomposition data are combined
with sophisticated least-squared optimization
methods such as ForceBalance or ML methods,
which are described next.

Automated Parameterization Methods
The parameterization of water models may incorpo-
rate training data from diverse experimental and
ab initio theoretical data sources. In the parameteri-
zation procedure, the model is used to simulate phys-
ical quantities that are directly compared to the
training data, and the parameters are adjusted itera-
tively to make the differences as small as possible.
Experimental data sources are uniquely abundant for
water, and include measured values of physical prop-
erties including thermodynamic, kinetic, structural,
interfacial, and phase change properties across a
wide range of temperatures and pressures.120–127

Empirical equations of state fitted to the experimen-
tal data provide a convenient means for retrieving
accurate values for many of these properties at

BOX 2

FUTURE WATER MODELS BASED ON
GUIDANCE FROM EDA

We have used ALMO-EDA to assess the quality
of the noncovalent terms in the polarizable
force field AMOEBA0325 for the water dimer,
water trimer, and a range of water-ion dimer
and trimer systems.115,116 To illustrate its useful-
ness for water models, the breakdown of
AMOEBA’s total energy into the total POL
energy contribution for the water trimer, and
its further breakdown into two- and three-body
POL, is shown in Figure 3. Compared to the
high quality ωB97X-V DFT benchmark the over-
all total intermolecular energy curve for the
AMOEBA water trimer is underbound through-
out the entire range of distances. Upon further
breakdown of the many-body POL into a many-
body expansion, expected to converge quickly
for an insulator such as water, the two-body
POL shows excellent agreement with the
ALMO-EDA, and AMOEBA’s three-body POL
appears to capture three-body POL explicitly
and three-body CT implicitly. Thus, the total
energy error over the distance scan is attribut-
able to the permanent electrostatics using point
multipoles that are excessively repulsive due to
lack of CP, and the pairwise-additive 14-7 van
der Waals wall that is insufficiently softened to
correct for that, with perhaps inadequate cap-
turing of two-body CT. EDA calculations and
proposed improvements to the basic AMOEBA
model are now beginning to appear in the
literature.115–119
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specified temperature and pressure values. Certain
physical properties such as the liquid density are par-
ticularly well-suited for direct comparison between
simulation and experiment; other properties such as
the heat of vaporization require ad hoc corrections
for approximations or assumptions made in the
water model or simulation method. In fact, simula-
tions and models that incorporate more physical
detail (e.g., electronic POL) have an advantage in
that their simulated properties are more directly com-
parable to the training data, and fewer ad hoc correc-
tions are needed (e.g., the self-POL correction used in
developing SPC/E has been reexamined in more
recent work). When developing water models
intended for classical Hamiltonian simulations, the
size of nuclear quantum effects on different experi-
mental properties must be considered; the enthalpy
of vaporization and isobaric heat capacity have sig-
nificant quantum effects requiring corrections. For
example, the development of TIP4P-Ew required
adjusting the experimental target for heat of vapori-
zation and isobaric heat capacity to reflect how the
population of high-frequency vibrational modes
depends on temperature and phase12; this procedure
was reproduced in the parameterization of
iAMOEBA, AMOEBA14, and uAMOEBA. Even
with the modified target values, the fully flexible
models tend to overestimate the heat capacity
because the high-frequency (ℏω � kBT) degrees of
freedom are not frozen out, as in the case of a quan-
tum system.

Theoretical data sources include ab initio-
calculated values of total potential energies, nuclear
gradients, and interaction energies for small water
clusters.128 Calculated electronic properties such as

multipole moments and higher-order response prop-
erties such as vibrational frequencies may also be
used. EDA, described in the previous section, is par-
ticularly useful for parameterizing physically moti-
vated potential terms in a water model; when used
alongside other data sources, the EDA guards against
overfitting of model parameters to the total proper-
ties of the system. The approximations in the
ab initio method, the empirical model and the classi-
cal simulation imply that the optimized model should
deviate somewhat from the training data, and this
comparison becomes increasingly fraught with more
approximate empirical models. Explicit POL is
important for quantitative comparisons to ab initio
data in the gas phase; fixed-charge models rely on ad
hoc schemes to approximate POL in a mean-field
sense, which are difficult to improve upon
systematically.

The choice of training data is only one dimen-
sion of variability in the space of possible parameteri-
zation strategies; two other dimensions are the choice
of parameters being optimized (including restraints
on these parameters), and the optimization method
being used. The development of a water model
involves producing the training data set, running sim-
ulations, and fitting parameters; overall this is a task
with many interconnected components that is ardu-
ous to carry out and even more difficult to repro-
duce. The parameterization workflow is usually
accomplished using scripts to glue the required com-
ponents together; a relatively early example is a tcsh
script for simplex optimization by Faller and
coworkers.129 More recently, several parameteriza-
tion programs have been made available for further
generality and reproducibility; these include

FIGURE 3 | Comparison of the ALMO-EDA decomposition of the intermolecular energy profile against AMOEBA0325 for the water trimer.
(a) Total energy and total polarization energy for AMOEBA against the ωB97X-V DFT benchmark and its decomposition using ALMO-EDA for
polarization. (b) The two-body polarization energy for one of the three pairs in the trimer. (c) The three-body polarization as well as the sum of
ALMO’s three-body polarization and charge-transfer terms. The distance coordinate corresponds to displacement from equilibrium from the
reference geometries (Reprinted with permission from Ref 116. Copyright 2017 AIP Publishing).
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ForceBalance (developed by one of us),31,53 potfit by
Brommer et al.,130 and Wolf(2)Pack by Hulsmann
et al.131 We also note related research in the
AMOEBA, AMBER, and CHARMM simulation
communities that provide automated programs for
parameterizing new molecules by following fixed
procedures; these methods are not directly applicable
to water or developing novel functional forms.

ForceBalance is a software package for system-
atic and reproducible model parameterization that has
been used to develop a series of water models; these
include a polarizable model based on QTPIE (CT),31

iAMOEBA (direct induced dipoles),31 AMOEBA14
(mutual induced dipoles),32 uAMOEBA (single-site
mutual induced dipoles),45 as well as TIP3P-FB and
TIP4P-FB (fixed charge).53 In addition, ForceBalance
was used to develop AMOEBA vdW parameters for
organochlorine compounds,74 AMBER-style protein
force field parameters,132 GROMOS-style parameters
for phospholipid bilayers,133 semiempirical parameters
for liquid water,134 and auxiliary grids for the tensor
hypercontraction (THC) approximation of MP2.135

The code introduces three key abstractions that help
to accommodate diverse model parameterization
workflows:

1. The force field is a convenient way to represent
a plain text or XML file containing numerical
values to be optimized, and provides a method
for writing copies of the file with modified
values. Importantly, the force field allows func-
tional relationships between parameters, as
well as constraints and rescaling factors; these
are often needed for parameters with physical
meanings and which may have very different
orders of magnitude depending on the unit
system.

2. The engine is an interface to the simulation
software package that implements the model,
which can be done using APIs (when available)
or the operating system. Engine implementa-
tions include OpenMM, AMBER, TINKER,
Gromacs, and Psi4.

3. The target represents an observable that can be
calculated using the model and directly com-
pared to a stored reference value; the objective
function is a weighted sum of least-squares
errors from multiple targets, plus a regulariza-
tion term that penalizes parameter overfitting.

In an optimization cycle (presented graphically in
Figure 4), the current values of optimization parame-
ters are passed to the force field object to create a

parameter file. The targets then call the engine func-
tions (and by extension, the external codes) to evalu-
ate the observables needed to compute the objective
function as well as its derivatives. An optimization
algorithm then predicts the next set of optimization
parameters to minimize the objective function. Force-
Balance implements several optimization algorithms
including interfaces to methods in the SciPy package
for scientific computing; in practice the best perfor-
mance is obtained from a natively implemented
quasi-Newton algorithm that uses the first derivatives
of the properties. We have not found evidence for
multiple minima in the parameter space for any of
the model development projects, though this must be
kept in mind whenever gradient-based optimization
workflows are used.

In order to use the quasi-Newton optimizer,
ForceBalance requires first derivatives of all calcu-
lated properties with respect to the parameters being
optimized. Derivatives of single-point properties
(e.g., energies and gradients) are carried out via finite
difference; simulated thermodynamic properties are
more challenging due to the high computational cost
and statistical uncertainty inherent to running a sim-
ulation. ForceBalance implements semi-analytic

MD
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Reference
data: ab initio
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experiments
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FIGURE 4 | Steps of the ForceBalance optimization cycle. The
initial force field parameters (lower left) are used to perform
simulations using molecular dynamics (MD) software (upper left). The
objective function is computed as a least-squares function of the
differences between simulation results and reference data (upper
right). The optimization method updates the parameters in order to
minimize the objective function (bottom right).
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expressions for efficiently obtaining parametric deriv-
atives of many thermodynamic properties without
needing to run multiple simulations. A statistical
mechanical fluctuation formula136 provides the para-
metric derivatives of a general thermodynamic prop-
erty A as:

∂A
∂λ

=
∂A
∂λ

−
1

kBT
A
∂E
∂λ

−A
∂E
∂λ

� �
ð4Þ

where λ is the model parameter, h�i the ensemble
average using the current value of λ, and E the poten-
tial energy. Because A and E can be evaluated indi-
vidually for trajectory frames in the simulation, the
quantities on the right-hand side may be evaluated in
a post-processing step by making small changes in λ
and looping over the trajectory frames. In practice,
this approach is highly effective in accurately fitting
thermodynamic properties of water; we typically use
six experimental properties (density, heat of vapori-
zation, thermal expansion coefficient, isothermal
compressibility, isobaric heat capacity, and dielectric
constant) over a wide temperature and pressure
range. These data, in combination with a large and
multifaceted ab initio data set, can be accurately
fitted using ForceBalance and the AMOEBA func-
tional form. Looking toward to the future, we will
incorporate EDA into ForceBalance, which we expect
will lead to models with improved accuracy and
transferability.

ML Approaches to Parameterization
Machine learning (ML), broadly defined, consists of
training a general model using a large data set in
order to make predictions outside the training data
set. Driven by the burgeoning availability of large
data sets and increased computational capabilities,
ML methods have significantly improved over the
last 10 years and made major impacts in science and
beyond. In the context of molecular simulations,
ML—specifically, supervised learning—is used to
build a model that predicts physical properties
(e.g., potential energies) from the molecular structure,
by training on an ab initio data set where the target
outputs are known.137 The model parameters are
fitted by minimizing a least-squares function of the
errors between the model output and training data,
similar to the ForceBalance and other optimization
procedures discussed above. However, in contrast to
physically motivated optimization models, ML
models are highly flexible with the ability to fit
almost any data, but often with a trade-off that the

individual parts of the model may have no direct
physical interpretability.

One archetype of ML model is the artificial
neural network (ANN); one simple example of
which is the multilayer perceptron (MLP). The basic
element of the MLP is the node or neuron—a non-
linear function maps multiple inputs to one output.
The nodes are organized into layers, where the out-
puts of one layer are inputs to the next one. The
input layer consists of the geometric parameters of
the cluster of nodes (called features), and is fol-
lowed by one or more hidden layers, with the defi-
nition of ‘deep learning’ referring to many hidden
layers. Each hidden node computes the output vari-
able y from input variables xi using a nonlinear
function such as

y = 1 + exp a−
X
i

wixi

 !
=σ

" # !−1

ð5Þ

where a, σ, and wi are adjustable parameters, and the
sum is over the number of inputs. The sigmoidal
form of the function ensures the output goes
smoothly from 0 to 1 as the weighted sum

P
i wixi

increases beyond the threshold value a, roughly mim-
icking the biological function of a neuron. The final
output is the physical property or data representation
to be predicted. For computing basic Boolean opera-
tions, such as the simple XOR function, the parame-
ters in Eq. (5) are easily derived to define a ‘decision
plane’ that separates the ‘on’ from the ‘off’ solutions.
However, for more complex problems we cannot
write down a solution for parameters that correctly
determines the mapping of the input space {x} to out-
put space {y}, i.e., the determination of the decision
hyperplane. In order to find this hyperplane, the
ANN is provided some representative examples in
which to learn the mapping. If we are to maximize
the fidelity of this mapping, then it requires minimi-
zation of the deviation, D, of the predicted output, y,
from the observed output, O:

D=
1
2

XM
μ

XN
i

Oμ
i −y aμi ,σ

μ
i ,w

μ
i

� �� �2 ð6Þ

where μ is a sum over the M examples, and i is the
sum over the N output units. Hebb’s rule provides a
way of varying weights and thresholds to maximize
fidelity of the network to learn the input/output map-
ping from example.

δwik = ε Oμ
i −y aμi

� �� �
xk ð7Þ
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where ε is the ‘learning intensity,’ but the astute
reader will recognize this as just steepest descents.
Thus, the basic formulation of a feedforward-back
propagation ANN is to ensure that the training set is
composed of data examples that are representative of
the mappings between inputs {x} and the observa-
tions, O, and the ANN encoding of input and output
should not be so opaque that the learning process is
hampered. Because each node has independent
parameters, the model is highly flexible and general
for fitting of parameters. Other kinds of ANNs
include those that employ radial basis functions
(RBFs); here the final output y is computed from the
feature vector x as: y =

P
i wi exp −βix−ci

2
� �

, where
wi, βi and ci are fitting parameters and the sum runs
over the chosen number of RBFs. The Gaussian func-
tion is used here as an example but other functions
that depend on distance may be used; the output can
roughly be interpreted as a weighted sum over ‘cen-
ters’ where the contributions depend on the distance
from the feature vector to each center.

Gaussian process (GP) regression, or kriging, is
another important class of ML model that may be
regarded as a type of interpolation.138,139 The central
concept is a probability distribution of functions of
the feature space. If we draw a random function f(x)
from this distribution, the probability of observing
some value of the property y at x is a Gaussian ran-
dom variable with a mean μ and variance σ2. The
central assumption is that pairs of observed values
(e.g., yx and yz, observed at x and z respectively) are
correlated and decay with distance, which is reason-
able if we assume the functions are smooth on a
characteristic length scale ξd (d indexes the dimen-
sionality of the feature space). This is mathematically
described as:

Cov f xð Þ,f zð Þ½ � = exp −
X
d

ξd xd−zdj jpd
" #

ð8Þ

where both ξd and pd are adjustable parameters.
Finding the parameters of the GP model involves
maximizing a likelihood function of the model
parameters, given that the training data set has
already been observed (the set of values yi at the
feature vectors xi); in practice, determining these
parameters requires inverting a matrix with dimen-
sionality equal to the size of the training data set.
To evaluate the model prediction for a new data
point x*, we maximize another likelihood function
of y(x*), given the current values of model parame-
ters and observations in the training data set. The
result is given by

ymax x*
� �

= μ + rTR−1 y−μð Þ ð9aÞ

where

ri =Cov f xið Þ,f x*
� �� �

, Rij =Cov f xið Þ,f xj
� �� � ð9bÞ

and y is the array of observations from the training
data. The GP regression model has been used by
Brookes, Demerdash and Head-Gordon to correct
for missing higher order many-body forces for water
(D. H. Brookes et al., unpublished data) in the con-
text of the many-body expansion of AMOEBA
known as 3-AMOEBA.140

An early ANN model of the water dimer poten-
tial surface was introduced by No et al.80 Popelier
and coworkers applied several ML approaches to
accurately describe the environmental dependence of
multipole moments of water molecules in clusters up
to the hexamer.139,141 Behler and coworkers devel-
oped ANN models to fit the short-range part of the
intermolecular interactions and fitted energies for neu-
tral clusters containing up to 16 molecules,142 as well
as a number of protonated water clusters143; more
recently these simulations have been applied in the
condensed phase to study aqueous solutions of
NaOH.144 We expect that ML models will continue
to make an impact in the simulation of water, perhaps
in combination with physically motivated models; the
combined application of many-body expansions with
ANN potentials has been explored recently.145

NEW ALGORITHMS FOR SOLVING
MANY-BODY POL

Concurrent to the development of an advanced water
model is the equally important need to improve the
computational efficiency of its calculations through
better methodology. Historically the POL solution
for the point induced dipole model are solved
through self-consistent field (SCF) iterative solvers,
such as successive over-relaxation (SOR),146 precon-
ditioned conjugate gradient (PCG),147 or direct inver-
sion in the iterative subspace (DIIS)148 methods.
More recent approaches have improved upon the
computational cost of these standard SCF solvers.
One such example is the truncated conjugate gradient
(TCG) method, which minimizes the number of
matrix–vector multiplications and is amenable to
scaling on modern high-performance computing plat-
forms.149 The ‘optimized perturbation theory’ (OPT),
which cleverly uses a perturbation of the POL poten-
tial, is truncated at a tractable order and is then
empirically fit to approximately recover the fully
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converged result,150–152 all of which have been tested
on bulk water systems.

By contrast, Drude and fluctuating charge
models for POL are typically solved through an
extended Lagrangian (EL) formulation to treat POL
with negligible cost compared to the SCF
approaches.23,34,38 In the case of Drude oscillators
the EL equation of motion is based on a mass reparti-
tioning between the parent atom and its Drude oscil-
lator, with the goal of making the Drude mass small
enough to obey the Born Oppenheimer condition.
Even so, a basic EL approach using thermalized ‘hot’
Drude oscillators can be plagued with problems of
accuracy since the effective POL vector fluctuates
around an average orientation that does not conform
to the true electric field vector, and/or problems of sta-
bility in the context of a MD trajectory that forces the
reduction of the time step to be unacceptably short.
Instead, Lamoureux and Roux developed an EL
approach whereby the POL degrees of freedom are
kept cold at a temperature T* relative to the tempera-
ture of the real degrees of freedom, T, such that T* <
<T.23 Based on this two-temperature canonical or iso-
thermal isobaric ensemble (NVT,T* or NPT,T*), the
EL(T,T*) schemes were found to be stable on the
1.0–2.0 fs timescale with much better accuracy for
the polarizable SPC water model (PSPC).38

In contrast to these SCF and EL schemes, we
have adapted a time-reversible formulation of
ab initio dynamics introduced by Niklasson and
colleagues153–157 to the problem of classical
POL.158–160 Our ‘inertial EL/SCF’ (iEL/SCF) method
is a hybrid of an EL and an SCF solution, in which
an extended set of auxiliary induced dipoles is intro-
duced and dynamically integrated so as to serve as a

time-reversible initial guess for the SCF solution of
the real-induced dipoles158 as given in Eq. (10)
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The iEL/SCF method was shown to drop the number
of SCF iterations by half for the AMOEBA polariz-
able model for water,158 and reduces the number of
SCF cycles from ~15–20 to ~3–5 for a small box of
water using linear scaling DFT in Onetep.161 In
2017, we introduced a new iEL/SCF method that
completely eliminates the need for any SCF itera-
tions, while still using a standard length time step of
1.0 fs for point induced dipoles, illustrated with the
AMOEBA model, which we call the iEL/0-SCF
(i.e., no self consistent field iterations)160 method.
Figure 5 confirms that the properties of calculating
mutual POL with iEL/0-SCF is equivalent to the
quality of a tightly converged SCF solution, and is
effectively as fast as using a multitime stepping
method with an outer time step of 2 fs. We have
recently extended the iEL/0-SCF approach to Drude
POL illustrated with the PSPC polarizable water
model.159 In this case, we were able to extend the
standard molecular dynamics time step to 6 fs—a
factor of 6× increase in time steps compared to stan-
dard EL(T,T*) approaches.

The import of this recent work on new solu-
tions to many-body POL is as follows: it is now
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FIGURE 5 | Comparisons of the standard preconditioned conjugate gradient SCF solver at 10−6 RMSD convergence and the SCF-less method
for AMOEBA water. (a) Time autocorrelation function of the induced dipoles for oxygen and hydrogen; (b) Oxygen–oxygen radial distribution
function; (c) simulation speed-up in nanoseconds per day for OpenMP scaling as a function of the number of cores for a box of 512 water
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possible to evaluate an important many-body
effect—POL—but at a computational cost of a direct
POL model,31,162 i.e., primarily the cost of the cho-
sen model for the permanent electrostatics. Further-
more, the difference between the PSPC and
AMOEBA water models illustrate an important
design choice for including POL. Because the PSPC
model is a rigid model, with simple point charge per-
manent electrostatics, and with no Drude POL on
light hydrogen centers, the time step can be pushed
close to an order of magnitude longer. By contrast in
order to accurately integrate the forces arising from
the fast varying electric fields from permanent dipoles
and (especially) quadrupoles, combined with their
presence on hydrogens with flexible bonds to oxygen,
means that the numerical integration time step must
be greatly reduced. Therefore, the advanced classical
model design choices affect how much statistical
sampling is possible.

CONCLUSION

Major effort is underway to develop improved MM
models of water that seek to address the shortcom-
ings of classical, pairwise-additive fixed charge, mani-
fested most clearly in their difficulty in describing
heterogeneous systems, and the properties of water
across the phase diagram. Historically, such
advanced force fields, many of which include the
leading-order many-body effect of POL, have faced
obstacles in their widespread adoption owing to com-
putational cost and difficulty in their parameteriza-
tion that have precluded their widespread use. The
purpose of this review is to underscore the major
advances in the development of advanced MM water
models in their parameterization, prescription of
functional form, and computational efficiency that
are rendering them competitive with standard
pairwise-additive fixed charge force fields.

First, we introduce the standard functional
forms used to capture the leading-order many-body
effect missing from pairwise-additive potentials
embodied in full mutual POL, exemplified by the
AMOEBA model. Aside from the noted advantages
of POL in allowing for transferability, we underscore
the distinct ability of POL to capture IR spectro-
scopic features of the cooperative hydrogen-bonding
network, which pairwise-additive potentials cannot
recover. While the original AMOEBA model24 dem-
onstrated notable inconsistencies in its ability to
model condensed-phase properties, reparameteriza-
tion efforts using the ForceBalance31,53 algorithm
have generated models that show remarkable

accuracy across the phase diagram, even yielding a
computationally efficient POL model, iAMOEBA,43

that responds only to the permanent electrostatic, or
direct, field, eliminating the need for expensive itera-
tive SCF calculations. ForceBalance exemplifies a
novel set of approaches toward optimizing parame-
ters in a systematic fashion by allowing multiple
training targets, from oligomeric to condensed-phase
properties, to be fit to simultaneously.

In addition to models that rely on parameteri-
zation approaches relying on experimental and
ab initio data, on the other end of the spectrum are
models that are parameterized entirely on ab initio
data, either total QM energies or EDA schemes. EDA
schemes afford a breakdown of total QM energies
into physicochemically sensible contributions, and
can be especially helpful in guiding the parameteriza-
tion of potentials in regions where intermolecular
orbital overlap, and therefore quantum mechanical
effects such as exchange–repulsion, becomes nonne-
gligible. A number of force fields in which elaborate
functional forms are prescribed for each of the dis-
tinct noncovalent contributions are being developed.

An interesting approach toward the formula-
tion of ab initio-based MM functional forms recog-
nizes (1) that the ability of the ab initio reference
calculation to capture electron correlation is critical;
and (2) that short-ranged, QM-dominated two- and
three-body effects, particularly owing to CT,
exchange–repulsion, and CP, may inherently be diffi-
cult to capture with the standard approach of match-
ing a single physical effect to a distinct functional
form; and (3) that anisotropy is important at short-
range and should be determined systematically
instead of by potentially erroneous chemical intui-
tion. These approaches recognize that such QM-
dominant effects may be expressed collectively as an
expansion in a basis, each of whose terms represent
approximately the known exponential or distance
times–exponential decay at short range. This family
of potentials have culminated in the development
most recently of MB-pol,58–60 which achieves unprec-
edented accuracy for water from the dimer to the
condensed phase. An additional crucial feature of
such models is that since the QM effects that are dif-
ficult to model are short-ranged, the prescriptions for
the long-ranged electrostatics, POL, and dispersion
may be kept relatively simple. However, while pow-
erful artillery, the MB-Pol water model is not very
mobile in its deployment on arbitrary chemical sys-
tem beyond pure water and simple halide-water sys-
tems. Yet another set of approaches toward
capturing the complexity at short-range are the
machine-learned methods that recognize that an MM

Advanced Review wires.wiley.com/compmolsci

14 of 21 © 2017 Wiley Per iodica ls , Inc.



prescription faithful to electronic structure perhaps
may not be rendered easily in a human-readable
functional form as is traditionally used in force fields.

Lastly, and very crucially, we show that the
major impediment to the adoption of polarizable
models, the computational cost of solving for the
induced dipoles, is now being overcome with novel
computational techniques. Very recent developments

in that area include TCG methods,149 perturbative
methods,150–152 and methods that render the EL
approach stable and robust, reducing158,161 or avoid-
ing SCF159,160 entirely. These computational efficien-
cies hold the promise of enabling advanced
polarizable force fields to become competitive with
and be treated on equal footing with traditional
pairwise-additive force fields for water.

ACKNOWLEDGMENTS

THG and OND thank the National Science Foundation Grant No. CHE-1363320 and CHE-1665315 for sup-
port of this work. LPW acknowledges support from the ACS Petroleum Research Fund, Award Number
58158-DNI6-0.

REFERENCES
1. Geissler PL, Dellago C, Chandler D, Hutter J,

Parrinello M. Autoionization in liquid water. Science
2001, 291:2121–2124.

2. Marx D. Proton transfer 200 years after von Grot-
thuss: insights from ab initio simulations. Chem-
PhysChem 2006, 7:1848–1870.

3. Tuckerman M, Laasonen K, Sprik M, Parrinello M.
Ab initio molecular dynamics simulation of the solva-
tion and transport of hydronium and hydroxyl ions
in water. J Chem Phys 1995, 103:150–161.

4. Schmitt UW, Voth GA. The computer simulation of
proton transport in water. J Chem Phys 1999,
111:9361–9381.

5. Paesani F, Iuchi S, Voth GA. Quantum Effects in liq-
uid water from an ab initio-based polarizable force
field. J Chem Phys 2007, 127:074506.

6. Habershon S, Markland TE, Manolopoulos DE.
Competing quantum effects in the dynamics of a flexi-
ble water model. J Chem Phys 2009, 131:024501.

7. Ceriotti M, Fang W, Kusalik PG, McKenzie RH,
Michaelides A, Morales MA, Markland TE. Nuclear
quantum effects in water and aqueous systems: exper-
iment, theory, and current challenges. Chem Rev
2016, 116:7529–7550.

8. Marsalek O, Markland TE. Ab initio molecular
dynamics with nuclear quantum effects at classical
cost: ring polymer contraction for density functional
theory. J Chem Phys 2016, 144:054112.

9. Halgren TA. Representation of Vanderwaals (Vdw)
interactions in molecular mechanics force-fields—
potential form, combination rules, and Vdw parame-
ters. J Am Chem Soc 1992, 114:7827–7843.

10. van der Spoel D, van Maaren PJ, Berendsen HJCA.
Systematic study of water models for molecular simu-
lation: derivation of water models optimized for use

with a reaction field. J Chem Phys 1998,
108:10220–10230.

11. Jorgensen WL, Chandrasekhar J, Madura JD,
Impey RW, Klein ML. Comparison of simple poten-
tial functions for simulating liquid water. J Chem
Phys 1983, 79:926–935.

12. Horn HW, Swope WC, Pitera JW, Madura JD,
Dick TJ, Hura GL, Head-Gordon T. Development of
an improved four-site water model for biomolecular
simulations: TIP4P-Ew. J Chem Phys 2004,
120:9665–9678.

13. Vega C, Abascal JLF, Sanz E, MacDowell LG,
McBride C. Can simple models describe the phase
diagram of water? J Phys-Condens Mat 2005, 17:
S3283–S3288.

14. Cisneros GA, Wikfeldt KT, Ojamae L, Lu JB, Xu Y,
Torabifard H, Bartok AP, Csanyi G, Molinero V,
Paesani F. Modeling molecular interactions in water:
from pairwise to many body potential energy func-
tions. Chem Rev 2016, 116:7501–7528.

15. Sprik M, Klein MA. Polarizable model for water
using distributed charge sites. J Chem Phys 1988,
89:7556–7560.

16. Warshel A, Kuwajima S. Incorporating electric Polar-
izabilities in water-water interaction potentials.
J Phys Chem 1990, 94:460.

17. Rick S, Stuart S, Berne B. Dynamical fluctuating
charge force-fields: application to liquid water.
J Chem Phys 1994, 101:6141–6156.

18. Gao JL. Toward a molecular orbital derived empirical
potential for liquid simulations. J Phys Chem B 1997,
101:657–663.

19. Chialvo AA, Cummings PT. Molecular-based model-
ing of water and aqueous solutions at supercritical
conditions. Adv Chem Phys 1999, 109:115.

WIREs Computational Molecular Science Advanced models for water simulations

© 2017 Wiley Per iodica ls , Inc. 15 of 21



20. Stern HA, Kaminski GA, Banks JL, Zhou RH,
Berne BJ, Friesner RA. Fluctuating charge, polarizable
dipole, and combined models: parameterization from
ab initio quantum chemistry. J Phys Chem B 1999,
103:4730–4737.

21. Chen B, Xing J, Siepmann JI. Development of polariz-
able water force fields for phase equilibrium calcula-
tions. J Phys Chem B 2000, 104:2391–2401.

22. Burnham CJ, Xantheas SS. Development of transferable
interaction models for water. IV. A flexible, all-atom
polarizable potential (TTM2-F) based on
geometry dependent charges derived from an ab initio
monomer dipole moment surface. J Chem Phys 2002,
116:5115.

23. Lamoureux G, MacKerell AD, Roux BA. Simple
polarizable model of water based on classical Drude
oscillators. J Chem Phys 2003, 119:5185–5197.

24. Ren PY, Ponder JW. Polarizable atomic multipole
water model for molecular mechanics simulation.
J Phys Chem B 2003, 107:5933–5947.

25. Ren P, Ponder JW. Temperature and pressure depen-
dence of the AMOEBA water model. J Phys Chem B
2004, 108:13427–13437.

26. Yu HB, Hansson T, van Gunsteren WF. Development
of a simple, self-consistent polarizable model for liq-
uid water. J Chem Phys 2003, 118:221–234.

27. Benjamin KM, Schultz AJ, Kofke DA. Virial coeffi-
cients of polarizable water applications to thermody-
namic properties and molecular clustering. J Phys
Chem C 2007, 111:16021–16027.

28. Bauer BA, Patel S. Properties of water along the
liquid-vapor coexistence curve via molecular dynam-
ics simulations using the polarizable TIP4P-QDP-LJ
water model. J Chem Phys , 2009, 131:084709.

29. Ponder JW, Wu C, Ren P, Pande VS, Chodera JD,
Schnieders MJ, Haque I, Mobley DL, Lambrecht DS,
DiStasio RA Jr, et al. Current status of the AMOEBA
polarizable force field. J Phys Chem B 2010,
114:2549–2564.

30. Lee AJ, Rick SW. The effects of charge transfer on
the properties of liquid water. J Chem Phys 2011,
134:184507.

31. Wang LP, Chen JH, Van Voorhis T. Systematic
Parametrization of polarizable force fields from quan-
tum chemistry data. J Chem Theory Comput 2013,
9:452–460.

32. Laury ML, Wang LP, Pande VS, Head-Gordon T,
Ponder JW. Revised parameters for the AMOEBA
polarizable atomic multipole water model. J Phys
Chem B 2015, 119:9423–9437.

33. Sprik M. Computer simulation of the dynamics of
induced polarization fluctuations in water. J Phys
Chem 1991, 95:2283–2291.

34. Lopes PE, Roux B, Mackerell AD Jr. Molecular
modeling and dynamics studies with explicit inclusion

of electronic polarizability. Theory and applications.
Theor Chem Acc 2009, 124:11–28.

35. Piquemal JP, Williams-Hubbard B, Fey N, Deeth RJ,
Gresh N, Giessner-Prettre C. Inclusion of the ligand
field contribution in a polarizable molecular mechan-
ics: SIBFA-LF. J Comput Chem 2003, 24:1963–1970.

36. Cisneros GA. Application of Gaussian electrostatic
model (GEM) distributed multipoles in the AMOEBA
force field. J Chem Theory Comput 2012,
8:5072–5080.

37. Duke RE, Starovoytov ON, Piquemal JP,
Cisneros GA. GEM*: a molecular electronic density-
based force field for molecular dynamics simulations.
J Chem Theory Comput 2014, 10:1361–1365.

38. Van Belle D, Couplet I, Prevost M, Wodak SJ. Calcu-
lations of electrostatic properties in proteins. J Mol
Biol 1987, 198:721–735.

39. Tran KN, Tan M-L, Ichiye TA. Single-site multipole
model for liquid water. J Chem Phys 2016,
145:034501.

40. Thole BT. Molecular polarizabilities calculated with a
modified dipole interaction. Chem Phys 1981,
59:341–350.

41. Liu H, Wang Y, Bowman JM. Quantum calculations
of the IR spectrum of liquid water using ab initio and
model potential and dipole moment surfaces and
comparison with experiment. J Chem Phys 2015,
142:194502.

42. Heyden M, Sun J, Funkner S, Mathias G, Forbert H,
Havenith M, Marx D. Dissecting the THz spectrum
of liquid water from first principles via correlations in
time and space. Proc Natl Acad Sci USA 2010,
107:12068–12073.

43. Wang LP, Head-Gordon T, Ponder JW, Ren P,
Chodera JD, Eastman PK, Martinez TJ, Pande VS.
Systematic improvement of a classical molecular
model of water. J Phys Chem B 2013,
117:9956–9972.

44. Esser A, Belsare S, Marx D, Head-Gordon T. Mode
specific THz spectra of solvated amino acids using the
AMOEBA polarizable force field. Phys Chem Chem
Phys 2017, 19:5579–5590.

45. Qi R, Wang LP, Wang QT, Pande VS, Ren PY.
United polarizable multipole water model for molecu-
lar mechanics simulation. J Chem Phys 2015, 143:12.

46. Ghosh D, Kosenkov D, Vanovschi V, Williams CF,
Herbert JM, Gordon MS, Schmidt MW,
Slipchenko LV, Krylov AI. Noncovalent interactions
in extended systems described by the effective frag-
ment potential method: theory and application to
Nucleobase oligomers. J Phys Chem A 2010,
114:12739–12754.

47. Gordon M, Freitag M, Bandyopadhyay P, Jensen J,
Kairys V, Stevens W. The effective fragment potential
method: a QM-based MM approach to modeling

Advanced Review wires.wiley.com/compmolsci

16 of 21 © 2017 Wiley Per iodica ls , Inc.



environmental effects in chemistry. J Phys Chem A
2001, 105:293–307.

48. Gordon M, Mullin J, Pruitt S, Roskop L,
Slipchenko L, Boatz J. Accurate methods for large
molecular systems. J Phys Chem B 2009,
113:9646–9663.

49. Gordon MS, Smith QA, Xu P, Slipchenko LV. Accu-
rate first principles model potentials for intermolecu-
lar interactions. Annu Rev Phys Chem 2013,
64:553–578.

50. Gurunathan PK, Acharya A, Ghosh D, Kosenkov D,
Kaliman I, Shao YH, Krylov AI, Slipchenko LV.
Extension of the effective fragment potential method
to macromolecules. J Phys Chem B 2016,
120:6562–6574.

51. Mullin J, Roskop L, Pruitt S, Collins M, Gordon M.
Systematic fragmentation method and the effective
fragment potential: an efficient method for capturing
molecular energies. J Phys Chem A 2009,
113:10040–10049.

52. Pruitt SR, Bertoni C, Brorsen KR, Gordon MS. Effi-
cient and accurate fragmentation methods. Acc Chem
Res 2014, 47:2786–2794.

53. Gao JL, Truhlar DG, Wang YJ, Mazack MJM,
Loffler P, Provorse MR, Rehak P. Explicit polariza-
tion: a quantum mechanical framework for develop-
ing next generation force fields. Acc Chem Res 2014,
47:2837–2845.

54. Han J, Mazack MJM, Zhang P, Truhlar DG, Gao J.
Quantum mechanical force field for water with
explicit electronic polarization. J Chem Phys 2013,
139:054503.

55. Xie W, Orozco M, Truhlar DG, Gao J. X-pol poten-
tial: an electronic structure-based force field for
molecular dynamics simulation of a solvated protein
in water. J Chem Theory Comput 2009, 5:459–467.

56. Brorsen KR, Willow SY, Xantheas SS, Gordon MS.
The melting temperature of liquid water with the
effective fragment potential. J Phys Chem Lett 2015,
6:3555–3559.

57. Burnham CJ, Xantheas SS. Development of transfer-
able interaction models for water. III. Reparametriza-
tion of an all-atom polarizable rigid model (TTM2-R)
from first principles. J Chem Phys 2002,
116:1500–1510.

58. Burnham CJ, Xantheas SS. Development of transfer-
able interaction models for water. I. Prominent fea-
tures of the water dimer potential energy surface.
J Chem Phys 2002, 116:1479–1492.

59. Xantheas SS, Burnham CJ, Harrison RJ. Develop-
ment of transferable interaction models for water.
II. Accurate energetics of the first few water clusters
from first principles. J Chem Phys 2002,
116:1493–1499.

60. Burnham CJ, Anick DJ, Mankoo PK, Reiter GF. The
vibrational proton potential in bulk liquid water and
ice. J Chem Phys 2008, 128:154519.

61. Fanourgakis GS, Xantheas SS. Development of trans-
ferable interaction potentials for water. V. Extension
of the flexible, polarizable, Thole-type model poten-
tial (TTM3-F, v. 3.0) to describe the vibrational spec-
tra of water clusters and liquid water. J Chem Phys
2008, 128:074506.

62. Partridge H, Schwenke DW. The determination of an
accurate isotope dependent potential energy surface
for water from extensive ab initio calculations and
experimental data. J Chem Phys 1997,
106:4618–4639.

63. Bukowski R, Szalewicz K, Groenenboom GC, van der
Avoird A. Predictions of the properties of water from
first principles. Science 2007, 315:1249–1252.

64. Bukowski R, Szalewicz K, Groenenboom GC, van der
Avoird A. Polarizable interaction potential for water
from coupled cluster calculations. I. Analysis of dimer
potential energy surface. J Chem Phys 2008,
128:094314.

65. Bukowski R, Szalewicz K, Groenenboom GC, van der
Avoird A. Polarizable interaction potential for water
from coupled cluster calculations. II. Applications to
dimer spectra, virial coefficients, and simulations of
liquid water. J Chem Phys 2008, 128:094314.

66. Cencek W, Szalewicz K, Leforestier C, van
Harrevelt R, van der Avoird A. An accurate analytic
representation of the water pair potential. Phys Chem
Chem Phys 2008, 10:4716–4731.

67. Gora U, Cencek W, Podeszwa R, van der Avoird A,
Szalewicz K. Predictions for water clusters from a
first-principles two- and three-body force field.
J Chem Phys 2014, 140:194101.

68. Huang XC, Braams BJ, Bowman JM. Ab initio poten-
tial energy and dipole moment surfaces of (H2O)(2).
J Chem Phys A 2006, 110:445–451.

69. Wang YM, Bowman JM. Towards an ab initio flexi-
ble potential for water, and post-harmonic quantum
vibrational analysis of water clusters. Chem Phys Lett
2010, 491:1–10.

70. Wang YM, Bowman JM. Ab initio potential and
dipole moment surfaces for water. II. Local-monomer
calculations of the infrared spectra of water clusters.
J Chem Phys 2011, 134:244313.

71. Wang YM, Shepler BC, Braams BJ, Bowman JM.
Full-dimensional, ab initio potential energy and
dipole moment surfaces for water. J Chem Phys
2009, 131:054511.

72. Babin V, Medders GR, Paesani F. Toward a universal
water model: first principles simulations from the
dimer to the liquid phase. J Phys Chem Lett 2012,
3:3765–3769.

WIREs Computational Molecular Science Advanced models for water simulations

© 2017 Wiley Per iodica ls , Inc. 17 of 21



73. Babin V, Leforestier C, Paesani F. Development of a
"first principles" water potential with flexible mono-
mers: dimer potential energy surface, VRT Spectrum,
and second Virial coefficient. J Chem Theory Comput
2013, 9:5395–5403.

74. Babin V, Medders GR, Paesani F. Development of a
"first principles" water potential with flexible mono-
mers. II: Trimer potential energy surface, third virial
coefficient, and small clusters. J Chem Theory Com-
put 2014, 10:1599–1607.

75. Medders GR, Babin V, Paesani F. Development of a
"first-principles" water potential with flexible mono-
mers. III. Liquid phase properties. J Chem Theory
Comput 2014, 10:2906–2910.

76. Reddy SK, Straight SC, Bajaj P, Pham CH, Riera M,
Moberg DR, Morales MA, Knight C, Gotz AW,
Paesani F. On the accuracy of the MB-pol many-body
potential for water: interaction energies, vibrational
frequencies, and classical thermodynamic and dynam-
ical properties from clusters to liquid water and ice.
J Chem Phys 2016, 145:194504.

77. Bajaj P, Gotz AW, Paesani F. Toward chemical accu-
racy in the description of ion-water interactions
through many-body representations. I. Halide-water
dimer potential energy surfaces. J Chem Theory Com-
put 2016, 12:2698–2705.

78. Millot C, Soetens JC, Costa MTCM, Hodges MP,
Stone AJ. Revised anisotropic site potentials for the
water dimer and calculated properties. J Chem Phys
A 1998, 102:754–770.

79. Millot C, Stone AJ. Towards an accurate intermolecu-
lar potential for water. Mol Phys 1992, 77:439–462.

80. Engkvist O, Forsberg N, Schutz M, Karlstrom G. A
comparison between the NEMO intermolecular water
potential and ab initio quantum chemical calculations
for the water trimer and tetramer. Mol Phys 1997,
90:277.

81. Holt A, Bostrom J, Karlstrom G, Lindh R. A NEMO
potential that includes the dipole-Quadrupole and
Quadrupole-Quadrupole Polarizability. J Comput
Chem 2010, 31:1583–1591.

82. Holt A, Karlstrom G. Inclusion of the quadrupole
moment when describing polarization. The effect of
the dipole-quadrupole polarizability (vol 29, pg 2033,
2008). J Comput Chem 2008, 29:2485–2486.

83. Gresh N. Model, multiply hydrogen-bonded water
oligomers (N = 3-20). How closely can a separable,
ab initio-grounded molecular mechanics procedure
reproduce the results of supermolecule quantum
chemical computations? J Chem Phys A 1997,
101:8680–8694.

84. Gresh N, Cisneros GA, Darden TA, Piquemal JP.
Anisotropic, polarizable molecular mechanics studies
of inter- and intramoecular interactions and ligand-
macromolecule complexes. A bottom-up strategy.
J Chem Theory Comput 2007, 3:1960.

85. Chaudret R, Gresh N, Parisel O, Piquemal JP. Many-
body exchange-repulsion in polarizable molecular
mechanics. I. Orbital-based approximations and
applications to hydrated metal Cation complexes.
J Comput Chem 2011, 32:2949–2957.

86. Cisneros GA, Elking D, Piquemal JP, Darden TA.
Numerical fitting of molecular properties to Hermite
Gaussians. J Chem Phys A 2007, 111:12049–12056.

87. Lifson S, Warshel A. Consistent force field for calcu-
lations of conformations, vibrational spectra, and
enthalpies of cycloalkane and n-alkane molecules.
J Chem Phys 1969, 49:5116.

88. Born M, Mayer JE. Zur Gittertheorie der Ionenkris-
talle. Z Phys 1932, 75:1–18.

89. Buckingham RA. The classical equation of state of
gaseous helium,neon,and argon. Proc R Soc A Math
Phys Eng Sci 1938, 168:264–283.

90. Van Vleet MJ, Misquitta AJ, Stone AJ, Schmidt JR.
Beyond Born–Mayer: improved models for short-
range repulsion in ab initio force fields. J Chem The-
ory Comput 2016, 12:3851–3870.

91. Kitaura K, Morokuma K. New energy decomposition
scheme for molecular-interactions within Hartree-
Fock approximation. Int J Quantum Chem 1976,
10:325–340.

92. Chen W, Gordon M. Energy decomposition analyses
for many-body interaction and applications to water
complexes. J Chem Phys 1996, 100:14316–14328.

93. Mitoraj M, Michalak A, Ziegler TA. Combined
charge and energy decomposition scheme for bond
analysis. J Chem Theory Comput 2009, 5:962–975.

94. Horn PR, Head-Gordon M. Alternative definitions of
the frozen energy in energy decomposition analysis of
density functional theory calculations. J Chem Phys
2016, 144:084118.

95. Jeziorski B, Moszynski R, Szalewicz K. Perturbation-
theory approach to intermolecular potential-energy
surfaces of van-der-Waals complexes. Chem Rev
1994, 94:1887.

96. Misquitta A, Podeszwa R, Jeziorski B, Szalewicz K.
Intermolecular potentials based on symmetry-adapted
perturbation theory with dispersion energies from
time-dependent density-functional calculations.
J Chem Phys 2005, 123:214103.

97. Khaliullin RZ, Cobar EA, Lochan RC, Bell AT,
Head-Gordon M. Unravelling the origin of intermole-
cular interactions using absolutely localized molecular
orbitals. J Chem Phys A 2007, 111:8753–8765.

98. Reed A, Curtiss L, Weinhold F. Intermolecular inter-
actions from a natural bond orbital, donor-acceptor
viewpoint. Chem Rev 1988, 88:899–926.

99. Glendening E, Landis C, Weinhold F. Natural bond
orbital methods. Wiley Interdiscip Rev Comput Mol
Sci 2012, 2:1–42.

Advanced Review wires.wiley.com/compmolsci

18 of 21 © 2017 Wiley Per iodica ls , Inc.



100. Stone AJ. The Theory of Intermolecular Forces.
Oxford: Clarendon Press; 1997.

101. Tafipolsky M, Ansorg K. Toward a physically moti-
vated force field: hydrogen bond directionality from a
symmetry-adapted perturbation theory perspective.
J Chem Theory Comput 2016, 12:1267–1279.

102. McDaniel JG, Schmidt JR. Next-generation force
fields from symmetry-adapted perturbation theory.
Annu Rev Phys Chem 2016, 67:467–488.

103. Schmidt JR, Yu K, McDaniel JG. Transferable next-
generation force fields from simple liquids to complex
materials. Acc Chem Res 2015, 48:548–556.

104. McDaniel JG, Schmidt JR. First-principles many-body
force fields from the gas phase to liquid: a "univer-
sal" approach. J Phys Chem B 2014,
118:8042–8053.

105. McDaniel JG, Schmidt JR. Physically-motivated force
fields from symmetry-adapted perturbation theory.
J Chem Phys A 2013, 117:2053–2066.

106. Yu K, Schmidt JR. Many-body effects are essential in
a physically motivated CO2 force field. J Chem Phys
2012, 136:034503.

107. McDaniel JG, Schmidt JR. Robust, transferable, and
physically motivated force fields for gas adsorption in
functionalized zeolitic Imidazolate frameworks.
J Phys Chem C 2012, 116:14031–14039.

108. Stevens WJ, Fink WH. Frozen fragment reduced vari-
ational space analysis of hydrogen-bonding
interactions—application to the water dimer. Chem
Phys Lett 1987, 139:15–22.

109. Bagus PS, Hermann K, Bauschlicher CWA. New
analysis of charge-transfer and polarization for
ligand-metal bonding—model studies of Al4co and
Al4nh3. J Chem Phys 1984, 80:4378–4386.

110. Bagus PS, Illas F. Decomposition of the chemisorp-
tion bond by constrained variations—order of the
variations and construction of the variational spaces.
J Chem Phys 1992, 96:8962–8970.

111. Misquitta AJ, Stone AJ. Ab initio atom-atom poten-
tials using CAMCASP: theory and application to
many-body models for the pyridine dimer. J Chem
Theory Comput 2016, 12:4184–4208.

112. Mardirossian N, Head-Gordon M. omega B97X-V: a
10-parameter, range-separated hybrid, generalized
gradient approximation density functional with non-
local correlation, designed by a survival-of-the-fittest
strategy. Phys Chem Chem Phys 2014,
16:9904–9924.

113. Mardirossian N, Head-Gordon M. Mapping the
genome of meta-generalized gradient approximation
density functionals: the search for B97M-V. J Chem
Phys 2015, 142:074111.

114. Mardirossian N, Head-Gordon M. omega B97M-V:
a combinatorially optimized, range-separated hybrid,

meta-GGA density functional with VV10 nonlocal
correlation. J Chem Phys 2016, 144:214110.

115. Mao Y, Demerdash O, Head-Gordon M, Head-
Gordon T. Assessing ion–water interactions in the
AMOEBA force field using energy decomposition
analysis of electronic structure calculations. J Chem
Theory Comput 2016, 12:5422–5437.

116. Demerdash O, Mao Y, Liu T, Head-Gordon M,
Head-Gordon T. Assessing many-body contributions
to intermolecular interactions of the AMOEBA force
field using energy decomposition analysis of elec-
tronic structure calculations. J Chem Phys 2017,
147:161721.

117. Qi R, Wang Q, Ren P. General van der Waals poten-
tial for common organic molecules. Bioorg Med
Chem 2016, 24:4911–4919.

118. Liu C, Qi R, Wang Q, Piquemal JP, Ren P. Capturing
many-body interactions with classical dipole induc-
tion models. J Chem Theory Comput 2017,
13:2751–2761.

119. Wang QT, Rackers JA, He C, Qi R, Narth C,
Lagardere L, Gresh N, Ponder JW, Piquemal JP,
Ren PY. General model for treating short-range elec-
trostatic penetration in a molecular mechanics force
field. J Chem Theory Comput 2015, 11:2609–2618.

120. Kell GS. Density, thermal Expansivity, and com-
pressibility of liquid water from 0 degrees to 150
degrees—correlations and tables for atmospheric-
pressure and saturation reviewed and expressed on
1968 temperature scale. J Chem Eng Data 1975,
20:97–105.

121. Wagner W, Pruss A. The IAPWS formulation 1995
for the thermodynamic properties of ordinary water
substance for general and scientific use. J Phys Chem
Ref Data Monogr 2002, 31:387–535.

122. Hura G, Sorenson JM, Glaeser RM, Head-
Gordon TA. High-quality x-ray scattering experiment
on liquid water at ambient conditions. J Chem Phys
2000, 113:9140–9148.

123. Soper AK. The radial distribution functions of water
and ice from 220 to 673 K and at pressures up to
400 MPa. Chem Phys 2000, 258:121–137.

124. Skinner LB, Huang C, Schlesinger D, Pettersson LG,
Nilsson A, Benmore CJ. Benchmark oxygen-oxygen
pair-distribution function of ambient water from x-
ray diffraction measurements with a wide Q-range.
J Chem Phys 2013, 138:074506.

125. Brookes DH, Head-Gordon T. Family of oxygen-
oxygen radial distribution functions for water. J Phys
Chem Lett 2015, 6:2938–2943.

126. Clark GNI, Cappa CD, Smith JD, Saykally RJ, Head-
Gordon T. The structure of ambient water. Mol Phys
2010, 108:1415–1433.

127. Maréchal Y. The molecular structure of liquid water
delivered by absorption spectroscopy in the whole IR

WIREs Computational Molecular Science Advanced models for water simulations

© 2017 Wiley Per iodica ls , Inc. 19 of 21



region completed with thermodynamics data. J Mol
Struct 2011, 1004:146–155.

128. Fanourgakis GS, Aprà E, Xantheas SS. High-level
ab initio calculations for the four low-lying families
of minima of (H2O)20. I. Estimates of MP2/CBS
binding energies and comparison with empirical
potentials. J Chem Phys 2004, 121:2655–2663.

129. Faller R, Schmitz H, Biermann O, Muller-Plathe F.
Automatic parameterization of force fields for liquids
by simplex optimization. J Comput Chem 1999,
20:1009–1017.

130. Brommer P, Gahler F. Potfit: effective potentials from
ab initio data. Model Simul Mater Sci Eng 2007,
15:295–304.

131. Hulsmann M, Kirschner KN, Kramer A,
Heinrich DD, Kramer-Fuhrmann O, Reith D. Opti-
mizing molecular models through force-field parame-
terization via the efficient combination of modular
program packages. In: Snurr RQ, Adjiman CS,
Kofke DA, eds. Foundations of Molecular Modeling
and Simulation. Singapore: Springer-Verlag Singapore
Pte Ltd; 2016 https://doi.org/10.1007/978-981-10-
1128-3_4.

132. Wang LP, McKiernan KA, Gomes J, Beauchamp KA,
Head-Gordon T, Rice JE, Swope WC, Martinez TJ,
Pande VS. Building a more predictive protein force
field: a systematic and reproducible route to AMBER-
FB15. J Phys Chem B 2017, 121:4023–4039.

133. McKiernan KA, Wang LP, Pande VS. Training and
validation of a liquid-crystalline phospholipid bilayer
force field. J Chem Theory Comput 2016,
12:5960–5967.

134. Welborn M, Chen JH, Wang LP, Van Voorhis T.
Why many Semiempirical molecular orbital theories
fail for liquid water and how to fix them. J Comput
Chem 2015, 36:934–939.

135. Kokkila Schumacher SIL, Hohenstein EG,
Parrish RM, Wang LP, Martinez TJ. Tensor Hyper-
contraction second-order Moller-Plesset perturbation
theory: grid optimization and reaction energies.
J Chem Theory Comput 2015, 11:3042–3052.

136. Bourasseau E, Haboudou M, Boutin A, Fuchs AH,
Ungerer P. New optimization method for intermole-
cular potentials: optimization of a new anisotropic
united atoms potential for olefins: prediction of equi-
librium properties. J Chem Phys 2003,
118:3020–3034.

137. Behler J. Perspective: machine learning potentials for
atomistic simulations. J Chem Phys 2016, 145:9.

138. Kolb B, Marshall P, Zhao B, Jiang B, Guo H. Repre-
senting global reactive potential energy surfaces using
Gaussian processes. J Chem Phys A 2017,
121:2552–2557.

139. Handley CM, Hawe GI, Kell DB, Popelier PLA. Opti-
mal construction of a fast and accurate polarisable
water potential based on multipole moments trained

by machine learning. Phys Chem Chem Phys 2009,
11:6365–6376.

140. Demerdash ON, Head-Gordon T. Convergence of
the many-body expansion for energy and forces for
classical polarizable models in the condensed phase.
J Chem Theory Comput 2016, 12:3884–3893.

141. Davie SJ, Di Pasquale N, Popelier PLA. Incorporation
of local structure into kriging models for the predic-
tion of atomistic properties in the water decamer.
J Comput Chem 2016, 37:2409–2422.

142. Morawietz T, Behler JA. Density-functional theory-
based neural network potential for water clusters
including van der Waals corrections. J Chem Phys A
2013, 117:7356–7366.

143. Natarajan SK, Morawietz T, Behler J. Representing
the potential-energy surface of protonated water clus-
ters by high-dimensional neural network potentials.
Phys Chem Chem Phys 2015, 17:8356–8371.

144. Hellstrom M, Behler J. Proton-transfer-driven water
exchange mechanism in the Na+ solvation Shell.
J Phys Chem B 2017, 121:4184–4190.

145. Yao K, Herr JE, Parkhill J. The many-body expan-
sion combined with neural networks. J Chem Phys
2017, 146:9.

146. Young D. Iterative Solutions of Large Linear Sys-
tems. New York: Academic Press; 1971.

147. Wang W, Skeel RD. Fast evaluation of polarizable
forces. J Chem Phys 2005, 123:164107.

148. Pulay P. Convergence acceleration of iterative
sequences. The case of SCF iteration. Chem Phys Lett
1980, 73:393–398.

149. Aviat F, Levitt A, Stamm B, Maday Y, Ren P,
Ponder JW, Lagardère L, Piquemal J-P. Truncated
conjugate gradient: an optimal strategy for the analyt-
ical evaluation of the many-body polarization energy
and forces in molecular simulations. J Chem Theory
Comput 2017, 13:180–190.

150. Simmonett AC, IV FCP, Ponder JW, Brooks BR. An
empirical extrapolation scheme for efficient treatment
of induced dipoles. J Chem Phys 2016, 145:164101.

151. Simmonett AC, Pickard FC, Shao Y, Cheatham TE
III, Brooks BR. Efficient treatment of induced dipoles.
J Chem Phys 2015, 143:074115.

152. Simmonett AC, Pickard FCT, Schaefer HF 3rd,
Brooks BR. An efficient algorithm for multipole ener-
gies and derivatives based on spherical harmonics
and extensions to particle mesh Ewald. J Chem Phys
2014, 140:184101.

153. Niklasson AM. Extended born-Oppenheimer molecu-
lar dynamics. Phys Rev Lett 2008, 100:123004.

154. Niklasson AM, Cawkwell MJ. Generalized extended
Lagrangian born-Oppenheimer molecular dynamics.
J Chem Phys 2014, 141:164123.

155. Niklasson AM, Steneteg P, Odell A, Bock N,
Challacombe M, Tymczak C, Holmström E,

Advanced Review wires.wiley.com/compmolsci

20 of 21 © 2017 Wiley Per iodica ls , Inc.

https://doi.org/10.1007/978-981-10-1128-3_4
https://doi.org/10.1007/978-981-10-1128-3_4


Zheng G, Weber V. Extended Lagrangian born–
Oppenheimer molecular dynamics with dissipation.
J Chem Phys 2009, 130:214109.

156. Niklasson AM, Tymczak CJ, Challacombe M. Time-
reversible born-Oppenheimer molecular dynamics.
Phys Rev Lett 2006, 97:123001.

157. Niklasson AM, Tymczak CJ, Challacombe M. Time-
reversible ab initio molecular dynamics. J Chem Phys
2007, 126:144103.

158. Albaugh A, Demerdash O, Head-Gordon T. An effi-
cient and stable hybrid extended Lagrangian/self-
consistent field scheme for solving classical mutual
induction. J Chem Phys 2015, 143:174104.

159. Albaugh A, Head-Gordon T. A new method for treat-
ing Drude polarization in classical molecular

simulation. J Chem Theory Comput 2017. https://doi.
org/10.1021/acs.jctc.7b00838.

160. Albaugh A, Niklasson AMN, Head-Gordon T. Accu-
rate classical polarization solution with no self-
consistent field iterations. J Phys Chem Lett 2017,
8:1714–1723.

161. Vitale V, Dziedzic J, Albaugh A, Niklasson AM,
Head-Gordon T, Skylaris CK. Performance of
extended Lagrangian schemes for molecular dynamics
simulations with classical polarizable force fields and
density functional theory. J Chem Phys 2017,
146:124115.

162. Demerdash O, Yap EH, Head-Gordon T. Advanced
potential energy surfaces for condensed phase simula-
tion. Annu Rev Phys Chem 2014, 65:149–174.

WIREs Computational Molecular Science Advanced models for water simulations

© 2017 Wiley Per iodica ls , Inc. 21 of 21

https://doi.org/10.1021/acs.jctc.7b00838
https://doi.org/10.1021/acs.jctc.7b00838

	 Advanced models for water simulations
	INTRODUCTION
	ADVANCED POTENTIAL ENERGY SURFACES FOR WATER
	Polarizable Models
	Ab Initio-Derived Water Potentials for the Condensed Phase
	The Future of Ab Initio-Derived Water Potentials

	OPTIMIZATION APPROACHES TO DETERMINING FREE PARAMETERS
	Energy Decomposition Analysis for Improving Water Models
	Automated Parameterization Methods
	ML Approaches to Parameterization

	NEW ALGORITHMS FOR SOLVING MANY-BODY POL
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES


