
Communication: Hybrid ensembles for improved force matching
Lee-Ping Wang and Troy Van Voorhis 
 
Citation: J. Chem. Phys. 133, 231101 (2010); doi: 10.1063/1.3519043 
View online: http://dx.doi.org/10.1063/1.3519043 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v133/i23 
Published by the American Institute of Physics. 
 
Related Articles
Metadynamics in the conformational space nonlinearly dimensionally reduced by Isomap 
J. Chem. Phys. 135, 224504 (2011) 
Heavy atom nitroxyl radicals. V. An experimental and ab initio study of the previously unknown H2PS free radical 
J. Chem. Phys. 135, 214306 (2011) 
The theta-temperature depression caused by topological effect in ring polymers studied by Monte Carlo
simulation 
J. Chem. Phys. 135, 204903 (2011) 
Photoelectron spectroscopy of HC4N 
J. Chem. Phys. 135, 204307 (2011) 
Optimization of a genetic algorithm for searching molecular conformer space 
J. Chem. Phys. 135, 174106 (2011) 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 15 Dec 2011 to 171.67.216.21. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://aipadvances.aip.org?ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Lee-Ping Wang&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Troy Van Voorhis&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3519043?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v133/i23?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3660208?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3662416?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3663383?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3663617?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3656323?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 133, 231101 (2010)

Communication: Hybrid ensembles for improved force matching
Lee-Ping Wang and Troy Van Voorhisa)

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge,
MA 02139, USA

(Received 16 September 2010; accepted 3 November 2010; published online 16 December 2010)

Force matching is a method for parameterizing empirical potentials in which the empirical param-
eters are fitted to a reference potential energy surface (PES). Typically, training data are sampled
from a canonical ensemble generated with either the empirical potential or the reference PES. In
this Communication, we show that sampling from either ensemble risks excluding critical regions of
configuration space, leading to fitted potentials that deviate significantly from the reference PES. We
present a hybrid ensemble which combines the Boltzmann probabilities of both potential surfaces
into the fitting procedure, and we demonstrate that this technique improves the quality and stability
of empirical potentials. © 2010 American Institute of Physics. [doi:10.1063/1.3519043]

Molecular mechanics (MM) simulation is a powerful
method for investigating the dynamical behavior of complex
atomistic systems, but its utility depends critically on the
accuracy of the empirical potential being used. A common
approach is to fit the parameters in the empirical potential
to a high-accuracy reference potential energy surface (PES),
which can be obtained from quantum mechanical (QM) cal-
culations. This approach, known as force matching1–6 or po-
tential fitting,7–10 aims to find the optimal parameters k that
minimize an objective function χ2 of the difference between
a set of properties Q computed using the reference PES, and
the analogous properties M computed using the empirical
potential:

χ2 ≡
∫
R3N

P(r)|X(r, k)|2 dr. (1)

Here, the norm squared of the difference vector X(r, k)
≡ M(r, k) − Q(r, k) is integrated over the 3N -dimensional
configuration space. X may contain energies, atomistic forces,
and/or other computable quantities that one wishes to match.
The integral is typically performed by quadrature, or sam-
pling techniques such as the Metropolis algorithm; in the lat-
ter case, P(r) is a probability density corresponding to some
ensemble.

The ensemble being sampled may be generated with the
reference PES; we will call this the QM ensemble and de-
note the corresponding objective function using χ2

QM. Accu-
rate sampling of the QM ensemble is generally desirable but
costly. Alternatively, training configurations may be rapidly
sampled from the empirical (MM) ensemble; we will denote
the corresponding objective function using χ2

MM. Ischtwan
and Collins,11 and more recently Akin-Ojo and Wang6 have
proposed a scheme in which the MM ensemble is resampled
after parameterization, with the process repeated in genera-
tions until self-consistency. Both types of force matching uti-
lizing χ2

QM and χ2
MM have been applied widely to parameterize
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empirical potentials for gas-phase molecules,11–13 condensed
phase systems,2, 6, 14 and solids.1, 3, 15–17 The force matching
method is not restricted to using MM for the empirical poten-
tial or QM as the reference PES; in multiscale coarse graining
methods,18 the reference PES is an atomistic MM potential
and is used to parameterize an empirical potential for coarse-
grained particles.

In this Communication, we first present a simple heuris-
tic example where force matching using either χ2

MM or χ2
QM

does not optimally reproduce the QM PES. Instead, configu-
rations from both QM and MM ensembles are important for
force matching, and using either ensemble alone is insuffi-
cient. As a solution, we propose a hybrid-ensemble approach
that combines the probability densities of both ensembles and
generates an MM potential that optimally reproduces the QM
PES in the heuristic example. Finally, we demonstrate the ef-
fects of hybrid-ensemble force matching when it is applied to
parameterize MM potentials for a helium dimer and a water
hexamer.

As an example, take both the QM PES and the MM po-
tential to be hard repulsive walls as illustrated in Fig. 1. The
MM potential has one adjustable parameter σMM which sets
the location of the hard wall, and the optimal match is ob-
tained when σMM = σQM. We make the simplifying assump-
tion that the wall height is � kT , such that only the configura-
tions where r ≥ σ are thermally accessible, and the repulsive
region is excluded from the integral in Eq. (1).

Consider first the case where the QM PES has a hard
wall at σQM = 50, and the MM potential underestimates this
value at σMM = 30; we will denote this potential using MM<

[Fig. 1(a)]. The “error region,” with finite X(r, σMM), is given
by r ∈ {30, 50}; the QM-accessible region with finite PQM(r )
is given by r > 50, and the MM-accessible region with fi-
nite PMM(r ) is given by r > 30. The error region overlaps
with the MM-accessible region and contributes to χ2

MM; thus,
χ2

MM is minimized by increasing σMM until the optimal value,
σMM = σQM, is obtained. However, the error region does not
overlap with the QM-accessible region and does not con-
tribute to χ2

QM; in fact, any σMM < 50 minimizes χ2
QM! Thus,

minimizing χ2
QM risks severely underestimating σMM.
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FIG. 1. (a) QM and MM< potential energy curves. (b) QM and MM> po-
tential energy curves. The error region and thermally accessible regions are
labeled using arrows.

Now, consider the case where the initial guess is an over-
estimate (σMM = 70), denoted by MM> [Fig. 1(b)]. The er-
ror region is now r ∈ {50, 70}; the QM-accessible region is
the same (r > 50), and the MM-accessible region is r > 70.
The error region now overlaps with the QM-accessible region
but not the MM-accessible region. The fitting situation is re-
versed; there is a contribution to χ2

QM but not to χ2
MM. We now

expect minimizing χ2
QM to effectively optimize σMM, while

any σMM > 50 will minimize χ2
MM. Thus, in a realistic situa-

tion where the relationship between the QM PES and the MM
potential is unknown, we would expect force matching using
χ2

QM and χ2
MM to respectively underestimate and overestimate

σ ; clearly, both choices are inadequate. The problem is fur-
ther worsened when approximate functional forms are used
for the MM potential.

The key observation is that the optimization fails when
the chosen ensemble excludes configurations that are included
in the other ensemble. Evidently, it is essential for configura-
tions from both ensembles to contribute to χ2 in order to pro-
duce an accurate MM potential. A simple treatment would be
to construct χ2 using a hybrid ensemble which combines the
QM and MM probabilities

χ2
H ≡

∫
R3N

(ωPQM(r) + (1 − ω)PMM(r))|X(r, k)|2 dr. (2)

Here, ω is an adjustable mixing parameter which mixes
the QM and MM probabilities. In the hard-wall example, the
entire error region always has a finite probability density in
χ2

H, and minimizing χ2
H would effectively optimize σMM start-

ing from any initial value. Note that after obtaining a perfect
fit (i.e., the QM PES and MM potential are exactly the same),
the hybrid ensemble reduces to the standard QM or MM
ensemble.

Our main results in this Communication are based upon
force-matching using χ2

H. We now demonstrate the applica-
tion of hybrid-ensemble force matching to two example sys-
tems; the helium dimer and water hexamer. The QM PES,
in all cases, is computed at the Hartree-Fock (HF)/3-21G
level of theory using Q-Chem.19 MM simulations were per-
formed using GROMACS.20 Force matching was performed
using the ForTune force matching program developed within
our group, which minimizes χ2 using a Newton-Raphson al-
gorithm in similar fashion to previously published software
packages.21, 22 We include both energy and force contributions
in χ2; each component is inverse variance-weighted, and the
force components are attenuated by 1

3N such that energy and
force differences contribute approximately equally. In all opti-
mizations, a penalty proportional to |�k|2 is added to prevent
large fluctuations in the parameters when the change in χ2 is
small.

The examples presented in this Communcation are de-
signed to highlight the effects of using the hybrid ensemble
for force-matching to the QM PES and not intended to repro-
duce experimental properties. Thus, we will discuss the qual-
ity of the parameterization by direct comparison of the QM
PES and MM potentials in the former case, and by compar-
ing radial distribution functions from QM and MM molecular
dynamics in the latter.

Our first example, the parameterization of an MM poten-
tial for a helium dimer, is a direct computational realization
of the hard-wall example above. In HF theory, the interac-
tion between helium atoms is well characterized by a van der
Waals (vdW) repulsive interaction. Our MM potential uses the
Lennard-Jones (LJ) functional form

ELJ(rab) = 4ε

(
−

(
σab

rab

)6

+
(

σab

rab

)12
)

. (3)

In all cases, the LJ well depth ε is fixed at 0.01 kJ/mol,
and only the X-intercept σ is optimized. Training configu-
rations were obtained from a uniform grid of 800 He-He
internuclear separations ranging from 1.5 Å to 4.0 Å. χ2

QM

and χ2
MM were computed by performing a weighted sum

over snapshots, with the appropriate Boltzmann probabil-
ities: PQM,s = e−βEQM(rs ) and PMM,s = e−βEMM(rs ). The hy-
brid χ2

H uses an average probability with ω set to 0.5: PH,s

= 1
2 (PQM,s + PMM,s).

Two initial MM potentials, MM< and MM>, were cho-
sen such that they respectively underestimate and overesti-
mate the position of the repulsive wall. For each initial po-
tential, we obtained three optimized MM potentials using the
three objective functions above; each optimized MM poten-
tial was obtained from three generations of the iterative force
matching scheme described earlier. Figure 2 shows the QM
PES, initial MM potential, and the optimized MM potentials
obtained using each of the three objective functions. Here,
MMMM stands for “optimized MM potential using χ2

MM.” The
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(a)

(b)

FIG. 2. Optimized MM potentials from force matching, starting from the
initial guess (black line) and fitting to the quantum PES (black dots). Initial
guesses are MM< (a) and MM> (b); optimized MM potentials using χ2

MM
(red), χ2

QM (green), and χ2
H (blue) are shown.

values of σ and χ2 for the three optimizations are given in
Tables S1 and S2.23

From Fig. 2, the role reversal of QM versus MM weights
can be clearly seen. Starting from MM<, using χ2

MM repro-
duces the quantum result while using χ2

QM underestimates the
solution; the opposite effect is observed when we start from
MM>. In both cases, using χ2

H produces the correct solution,
because the regions that contribute to either χ2

MM and χ2
QM are

both counted.
It should be noted that in this example, all methods will

eventually lead to the correct result; the convergence will just
be very slow, taking many generations. This is because the
repulsive interaction still contributes a very small amount to
χ2, and that all regions are perfectly sampled in this ideal
case. When more parameters and degrees of freedom are in-
volved, changing the sampling method can lead to different
self-consistent MM potentials, as we describe in the follow-
ing example.

In our second example, our system is a cluster of six wa-
ter molecules; the intermolecular interactions in small water
clusters is highly nontrivial24 and MM potential development
for water remains a highly active field. We chose the flexi-
ble SPC/E model25 as our initial MM potential; the MM po-
tential contains seven empirical parameters. In each genera-
tion of force matching, the MM potential is used to generate
3.0 ns of dynamics in the canonical ensemble (T = 300 K),
from which 3000 snapshots are sampled at 1 ps time intervals
and added to the training data. We utilize WHAM26 to include

training data from past generations. A shallow harmonic po-
tential with force constant 0.01 kJ mol−1 nm−2 was applied to
prevent divergent trajectories.

The MM dynamics directly samples the MM ensemble,
so in computing χ2

MM each snapshot has an equal probabil-
ity. In computing χ2

H, each snapshot’s probability contains a
constant from the MM ensemble, plus a non-Boltzmann fac-
tor corresponding to that snapshot’s probability in the QM
ensemble

χ2
H =

S∑
s

(
ω

e−β(EQM(rs )−EMM(rs ))

SQM
+ (1 − ω)

1

S

)
|X(rs, k)|2.

(4)

Here, S is the total number of snapshots, and SQM is the sum
of all non-Boltzmann factors.

Three objective functions were used with the following
ensembles: χ2

80 (ω = 0.8), χ2
50 (ω = 0.5), and χ2

0 (ω = 0.0,
pure MM). Due to large fluctuations in the non-Boltzmann
factors, χ2

100 (ω = 1.0, pure QM) was not usable in force
matching and χ2

80 was used as a substitute. Force matching
was performed for 19 generations, and the final MM poten-
tials (MM80, MM50, MM0) were used to obtain radial dis-
tribution functions (RDFs) for comparison with an 1.8 ns
AIMD reference trajectory, generated using the same temper-
ature and harmonic potential. All three cases produced im-
proved agreement with the AIMD RDFs compared to the ini-
tial SPC/E parameters; however, none of the MM potentials
reproduced the exact shape of the AIMD RDFs, possibly due
to the limitations of the functional form.

Figure 3 shows the RDFs generated using the three op-
timized MM potentials compared to the AIMD RDF. MM80

underestimates the contact distances and peak positions for all
three atom pairs; notably, this occurred starting from an over-
estimated initial guess. This may have been caused by fitting
to components of χ2 from other intermolecular degrees of
freedom (i.e., torques) which couple to this one. MM0 overes-
timates the distances, while MM50 provides the best estimate
with peak positions agreeing with the AIMD result to within
0.1 Å. Thus, the hybrid-ensemble force matching leads to the
most accurate MM potential in this more complex case and
corresponds well with the earlier examples.

We also performed force matching by sampling from the
QM ensemble directly. Fifty thousand snapshots were sam-
pled at 1 ps intervals from the AIMD trajectories, and force
matching was used to obtain the optimized potential MM100.
We find that MM100 underestimates the approach distance, but
not as severely as MM80; this result is surprising as we expect
MM80 to interpolate between MM0 and MM100. This may
be due to differences in the sampling trajectories; the train-
ing data for MM100 came from direct AIMD, while the data
for MM80 came from an MM trajectory and required non-
Boltzmann weights. This indicates that more complete sam-
pling may be achieved by combining trajectories from both
AIMD and MM dynamics.

In summary, using a single canonical ensemble to obtain
training data for force matching can lead to substantial errors
in the optimized MM potential. In particular, there is a risk of
obtaining a poor fit if χ2 neglects regions which make large
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(a)

(b)

(c)

FIG. 3. Radial distribution functions of water for (a) O—O distances,
(b) O—H distances, and (c) H—H distances. Thirty AIMD RDFs of length
60 ps were combined to produce the reference curve.

contributions to |X(r, k)|2 and have finite probability in ei-
ther the QM or MM ensemble. As a solution, we proposed
constructing χ2 from a hybrid ensemble which combines the
probabilities from both ensembles. We demonstrated the ad-
vantages of the method by applying force matching to param-
eterize MM potentials for a helium dimer and a water cluster.
In both cases the anomalies associated with single-ensemble
objective functions χ2

QM and χ2
MM were shown, and the hy-

brid χ2
H provided the correct behavior. Our finding makes in-

tuitive sense: if training data are sampled from the MM en-
semble, the MM-accessible configurations will naturally be
included in the fit. Meanwhile, QM-accessible configurations

that are MM-inaccessible should still be penalized for their
absence.

The hybrid ensemble may be applied to improve the pa-
rameterization of atomic charges and vdW-type interactions
(e.g., LJ, n-6, or Buckingham), which traditionally are the
most difficult to parameterize yet are essential for determin-
ing the dynamical and bulk properties of any multimolecular
system.

This work was funded by ENI S.p.A. as part of the Solar
Frontiers Research Program.
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