
Tensor Hypercontraction Second-Order Møller−Plesset Perturbation
Theory: Grid Optimization and Reaction Energies
Sara I. L. Kokkila Schumacher,†,‡ Edward G. Hohenstein,†,‡,§ Robert M. Parrish,∥ Lee-Ping Wang,†,‡

and Todd J. Martínez*,†,‡

†Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
‡SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
§Department of Chemistry and Biochemistry, City College of New York, New York, New York 10031, United States
∥Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of
Technology, Atlanta, Georgia 30332-0400, United States

*S Supporting Information

ABSTRACT: We have recently introduced the tensor hypercontraction
(THC) method for electronic structure, including MP2. Here, we present an
algorithm for THC-MP2 that lowers the memory requirements as well as the
prefactor while maintaining the formal quartic scaling that we demonstrated
previously. We also describe a procedure to optimize quadrature grids used in
grid-based least-squares (LS) THC-MP2. We apply this algorithm to generate
grids for first-row atoms with less than 100 points/atom while incurring
negligible errors in the computed energies. We benchmark the LS-THC-MP2
method using optimized grids for a wide variety of tests sets including
conformational energies and reaction barriers in both the cc-pVDZ and cc-
pVTZ basis sets. These tests demonstrate that the THC methodology is not
limited to small basis sets and that it incurs negligible errors in both absolute
and relative energies.

I. INTRODUCTION

Second-order Møller−Plesset perturbation theory (MP2) is the
simplest post-HF method for including electron correlation.1 It
strikes a practical balance between accuracy and efficiency that
makes it applicable to many systems of chemical interest.
However, canonical MP2 scales as O(N5), where N is the
number of basis functions and is proportional to molecular size.
This steep scaling limits its practical use to small molecules.
This scaling is due to the transformation of the electron
repulsion integrals (ERIs) from the atomic orbital (AO) basis
to the molecular orbital (MO) basis.
A number of different approaches have been applied in an

effort to decrease the computational cost of MP2. Atomic
orbital formulations allow exploitation of the sparsity of ERIs in
the AO basis.2−6 Factorization of the orbital energy
denominator via the Laplace transformation or a Cholesky
decomposition (CD) is often combined with the AO basis
formulations, including recent work by Ochsenfeld and co-
workers.5,7,8 In other formulations, the ERIs are represented in
terms of localized orthogonal orbitals. Local correlation
methods allow one to neglect pair correlation between distant
localized orbitals.9−12 This approximation can be combined
with other techniques to reduce the cost.13 Other localized
orbital techniques, such as the pair natural orbital (PNO)
approach and the orbital-specific virtuals (OSVs) approach,
have been used to reduce the prefactor in local MP2 and other

methods.14−21 Both AO formulations and local correlation
methods in combination with other techniques have led to
linear-scaling MP2 methods.22−24 Unfortunately, reducing the
overhead computational cost associated with different linear-
scaling approaches is still a key challenge.25,26 Furthermore,
there has been progress in mitigating the difficulties with
discontinuities in potential energy surfaces, but ab initio
molecular dynamics with these approaches is not straightfor-
ward.27,28

Other methods involve the decomposition of the ERI into
more computationally efficient forms. There are at least three
methods for ERI decomposition that have been previously
applied to MP2. In each case, there are auxiliary indices (whose
range scales linearly with molecular size) that we label
uniformly as P and Q to highlight the similarities in the
methods. In the pseudospectral method, the ERIs are partially
evaluated numerically and partially evaluated analytically
through the use of transformations between spectral and
physical space.29−34 This leads to a formulation of the ERI as a
product of a third-order tensor and two matrices

∑μν λσ| ≈ ̅μ ν λσQ R A( )
P
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(1)
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Here, R̅ is a collocation matrix, the diagonal matrix w contains
the grid point weights, grid points indexed by P are located at
rp⃗, and S is the overlap matrix for the basis functions ϕμ. A
similar factorization can be achieved by using a pivoted
incomplete Cholesky decomposition of the ERI matrix.35−38

This allows the ERI tensor to be written in the form

∑μν λσ| ≈ μν λσL L( )
P

P P, ,
(4)

The density fitting (DF) approach, also known as the
resolution of the identity (RI), leads to a similar factorization
through a somewhat different route.7,39−44 Instead of a
Cholesky decomposition of the integral matrix, the DF
technique fits generalized densities using an auxiliary basis set
(χP)

∑ϕ ϕ χ⃗ ⃗ ≈ ⃗μ ν μνr r d r( ) ( ) ( )
P

P P,
(5)

where dμν,P are density fitting coefficients. Several different
fitting metrics have been developed to determine the density
fitting coefficients.45−48 Auxiliary basis sets have been
optimized49,50 within the commonly used Coulomb fitting
metric, often referred to as DF(J). Other ERI factorization
techniques, such as decomposing the two-electron integrals into
a representation with the canonical product tensor format, have
been applied to MP2 and coupled cluster theory to reduce
storage requirements or computational effort.51,52

Each of these ERI factorization techniques has been able to
provide some computational relief in MP2 while also
maintaining chemical accuracy in the computation of energy
differences.33,41,53−55 However, there are also distinct weak-
nesses that need to be addressed. We first illustrate the primary
weakness of DF approaches using the construction of the Fock
matrix as an example. In DF, the Coulomb contributions can be
expressed in terms of the two- and three-center integrals

∫ χ χ≡ | = ⃗ ⃗ ⃗ ⃗J P Q r
r

r dr dr( ) ( ) ( )
1

( )PQ P QDF 1
12

2 1 2
(6)

and
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and the Coulomb contribution to the Fock matrix is expressed
as

∑ μν λσ≈ | |μν
λσ

λσ
−J P J Q D( )( ) ( )

PQ
PQDF

1

(8)

where Dλσ represents the density matrix. Defining

∑ λσ= |
λσ

λσc P D( )P

(9)
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Equation 8 can be expressed as

∑ μν= |μνJ P d( )
P

P

(11)

In this formulation, the Coulomb contribution scales as O(N3),
where we use the fact that the range of the auxiliary index is
linear in the molecular size. In contrast, DF is unable to
produce any scaling advantage for the exchange contribution,
which can be represented as

∑ μλ νσ= | |μν
λσ

λσ
−K P J Q D( )( ) ( )

PQ
PQDF

1

(12)

This can be evaluated as

∑ νσ= |νλ
σ

λσc Q D( )Q

(13)
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Q
PQ

Q
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∑ μλ= |μν
λ

νλK P d( )
P

P

(15)

which scales as O(N4). There is thus no scaling reduction in the
computation of exchange with DF, and the problem lies in the
“pinning” of the μ and ν indices. Note that for exchange
matrices in SCF the low-rank factorization of the one particle
density matrix (D) into the product of occupied orbital
coefficients can be used to reduce the prefactor but not the
scaling.56 This inability to factor exchange-like terms manifests
in DF-MP2 as well, where it prevents the O(N5) scaling of MP2
from being reduced. Because CD approaches maintain the
pinning of the μ and ν indices, these suffer from the same
problem. Pseudospectral methods are able to reduce the scaling
of exchange terms, because the μ and ν indices are unpinned
(although the λ and σ indices remain pinned). However, this
comes with a difficulty in maintaining the permutational
symmetry of the integrals, and this can have a deleterious effect
on accuracy and stability.
Recently, an alternative ERI factorization method known as

tensor hypercontraction (THC) was introduced.57 This
technique is the first to efficiently allow full separation of all
four indices in the ERI. In general, the THC factorization of the
ERI tensor is represented as

∑μν λσ| ≈ μ ν λ σX X Z X X( )
PQ

P P PQ Q Q

(16)

In this notation, X and Z are matrices, whereas P and Q denote
auxiliary indices. Within the THC representation, all four of the
ERI indices are effectively completely unpinned. This additional
flexibility allows factorization of exchange-like terms. In
particular, it allows the scaling of MP2 to be reduced from
O(N5) to O(N4), regardless of whether the method is
formulated in the atomic or molecular orbital basis.
Furthermore, the index permutation symmetry of the integrals
is guaranteed by construction, as long as the matrix Z is
symmetric.
There are a number of possible ways to achieve the integral

factorization in eq 16. In this work, we use the least-squares
approach (LS-THC),58 which asserts a form for the X matrices
and solves for the optimal Z matrix by least-squares fitting to
minimize the error in the integrals (specifically, the 2-norm of
the difference between the exact and factorized integrals). In
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grid-based LS-THC, the X matrices are chosen to be
collocation matrices for a physical space grid, i.e.

ϕ= ⃗μ μX w r( )P
P P4 (17)

where wP is a weighting factor associated with the Pth grid point
(located at rP). This grid-based LS-THC approach to MP2 has
been demonstrated to be very accurate (errors compared to
DF-MP2 of less than 0.1 kcal/mol) for a number of test
molecules containing up to ≈60 atoms.58 However, the physical
space grids used to form the X factors were not optimized for
use with LS-THC-MP2. In this work, we present an
optimization scheme to tailor grids for use with LS-THC-
MP2 and show that a more than 2-fold reduction in the number
of grid points can be achieved. We apply this approach to
optimize grids for both the cc-pVDZ and cc-pVTZ basis sets,
showing that the LS-THC approach is not restricted to small
basis sets. Previous assessments of the errors associated with
the THC factorization have focused on absolute energies at
specific geometries. It is also important to ensure that any THC
errors are weakly varying with molecular geometry. In this
work, we investigate the behavior of errors in reaction energies
and barrier heights in order to demonstrate that the THC error
(using the optimized grids presented here) is negligible for
chemical purposes. Several benchmark sets have been chosen to
represent conformational effects, hydrogen-bonding configu-
rations, and reaction barrier heights. The molecules in these
sets range in size from 9 to over 450 atoms.

II. NOTATION
We use the Greek letters μ, ν, λ, and σ to denote one of the N
atomic orbital (AO) basis functions. In this work, these are
atom-centered contracted Gaussian functions. The particular
form of LS-THC that we use here relies on an intermediate DF
approximation. The associated DF auxiliary basis indices (of
which there are Naux members) will be represented by A and B.
The letters P, Q, R, and S are used to indicate one of the NP
auxiliary indices or grid point indices for the THC two-electron
integrals. The letters i and j represent one of the NO occupied
MO basis functions, whereas the letters a and b represent one
of the NV virtual MOs. Finally, we also use a Laplace
transformation to treat the orbital energy denominators. The
Laplace-transformed denominators are denoted τi

ν, where i
denotes the MO and ν indexes the Laplace quadrature points.

III. THEORY
III.A. LS-THC Integrals. In the grid-based formulation of

LS-THC, the X factors are given as collocation matrices, as
defined in eq 17. The matrix ZPQ is then obtained by
minimizing the square of the 2-norm of the residual. In other
words, we define the error as

∑μν λσΔ ≡ | − μν λσR Z R
1
2

( )
PQ

P PQ Q

2

2

(18)

where the joint collocation matrix is defined as Rμν
P = Xμ

PXν
P.

Minimizing the error with respect to the elements of ZPQ, and
defining the physical space overlap matrix Sphys as

∑=
μν

μν μνS R R( )PQ
P Q

phys
(19)

we arrive at an analytical solution

= − −Z S V S( )PQ
PQphys

1 phys
phys

1
(20)

where we use the fact that Sphys is real symmetric and Vphys is a
physical space projection of the ERIs

∑ μν λσ= |
μνλσ

μν λσV R R( )PQ
P Qphys

(21)

If the fully analytic ERIs are used to construct Vphys, then the
formation of ZPQ will scale as O(N5) due to eq 21. This effort
for the formation of ZPQ can be reduced to O(N4) by
introducing a DF approximation for the ERIs (in the Coulomb
metric here, but other metrics could also be used)7

∑ μν λσ= | |
μνλσ

μν λσ
−V R A J B R( )( ) ( )PQ

AB

P
AB

Qphys,DF
DF

1

(22)

This sequence of approximations is known as grid-based LS-
THC-DF-MP2. It is important to emphasize that NP must be
less than N2 for the procedure to be computationally
advantageous. When NP is greater or equal to N2, the least-
squares formulation of eq 20 is formally exact (as long as there
are no linear dependencies). In this case, there is also no
computational gain, as can be seen below. However, we find
that the number of grid points needed to achieve accurate
results is far less than N2 and, in fact, scales linearly with N.
This makes the factorization highly advantageous, leading to
scaling reductions of up to 2 powers of the molecular size so
far.57−62

III.B. THC-MP2. Using the LS-THC-DF-MP2 representa-
tion, an alternative factorization of THC-MP2 has been
implemented. In order to effectively factorize the MP2 energy
expression, we first must deal with the orbital energy
denominators

ε ε ε ε
Λ =

+ − −
1

ij
ab

a b i j (23)

We exploit the Laplace transformation63 and a subsequent
numerical quadrature51

∫ ∑ τ τ τ τΛ = ≈ε ε ε ε

ν

ν ν ν ν
∞

− + − −e dtij
ab t

a b i j
0

( )a b i j

(24)

By combining the THC approximation and the Laplace
transformation, the MP2 energy expression can be written as

∑ τ τ τ τ≈ −

× −

ν

ν ν ν νE X X Z X X

X X Z X X X X Z X X(2 )

abij PQRS
a b i j i

P
a
P PQ

j
Q

b
Q

i
R

a
R RS

j
S

b
S

i
R

b
R RS

j
S

a
S

MP2

(25)

With construction of the appropriate intermediates, this can be
evaluated in O(N4) operations. However, there are many
different ways to achieve this. Our previous implementation57

of THC-MP2 proved that quartic scaling was achievable, but it
did not focus on the prefactor. Here, we concentrate on
reducing the prefactor while maintaining quartic scaling. The
Coulomb-like contributions to the MP2 correlation energy,
described in Scheme 1, are formed in the same way as that
outlined previously. This part of the calculation scales only as
O(N3) and thus is usually not a bottleneck if exchange
contributions are also included.
Scheme 2 presents an alternative factorization for the

exchange-like contributions to the MP2 correlation energy
(involving the second term in parentheses in eq 25). After
obtaining the Coulomb-like energy contributions, we block
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over the occupied index, i, carrying out the exchange
factorization for each iblock. This algorithm for the exchange-
like energy contributions is formulated to carry the occupied, i,
index through as many intermediates as possible. This has a
minimum memory requirement of O(N2) as opposed to the
O(N3) memory requirement to store the full three index
quantities. The exchange-like algorithm described in this work
has reduced memory requirements and a reduced prefactor
relative to those of the previously published LS-THC-DF-MP2
algorithm for the exchange contributions. With a formal scaling
of O(N4), LS-THC-DF-MP2 is a lower scaling alternative to
conventional MP2 as well as DF-MP2.
III.C. Grid Optimization. In the LS-THC grid based

method, the X factors are defined by a physical space
quadrature with NP grid points. We construct the grids
following the usual procedure for numerical integration as
used in density functional theory. The full molecular quadrature
grid is constructed from atom-centered spherical quadratures.
To form the atom-centered spherical quadratures, a direct

product of angular {⟨ΩQ,wQ
Ω⟩} and radial {⟨ρQ,wQ

ρ ⟩} coordinates
(and their corresponding weights) is used, i.e.64

ρ⟨⎯→ ⟩ ≡ ⟨ ⟩ ⊗ ⟨Ω ⟩ρ Ωr w w w{ , } { , , }Q Q Q Q Q Q (26)

For the spherical coordinate, the natural choice of quadrature
rule is the family of Lebedev−Laikov grids.65 In our previous
work, we used either the predetermined Treutler−Ahlrichs
quadrature from DFT grids or a technique known as radial
discrete variable representation (R-DVR) to provide the radial
quadrature rules.66 In this work, we treat the radial quadrature
as an adjustable set of parameters, which we will optimize and
tabulate for specific basis sets, much as is done for DF auxiliary
basis sets. For reasons to be made clear shortly, we denote this
class of THC grids as Handy grids. In this approach, the radial
nodes, ρQ in [0,∞), will be the only free parameter in the
optimization procedure outlined below. To provide an
automatic set of radial weights, wQ

ρ , for a given set of radial
nodes, an irregularly spaced variant of the trapezoid rule,
motivated by the Handy radial scheme in DFT, is applied.67,68

First, a mapping of the radial nodes from [0,∞) to [0,1] is
defined

ρ
=

+
x

R
1

1 /Q
Q (27)

where R is the Bragg−Slater radius of the atom. The radial
weights are then given as

= −
−

ρ
+ −w x x

x R

x
[ ]

(1 )Q Q Q
Q

Q
1 1

5 3

7
(28)

where x0 ≡ 0 and xNρ+1 ≡ 1 for radial grid point indices Q ∈
[1,Nρ].
Once an atomic grid is built for each atom, the rules of Gill et

al. are used to rotate the atomic grids into a standard molecular
orientation.69,70 The final molecular grid is formed from the
weighted sum of the atomic quadrature grids, with the
Treutler−Ahlrichs version of Becke’s fuzzy Voronoi partition
used to form the atomic weights.66 A more detailed description
of the molecular grid formation is included in Sections I and
II.A of the Supporting Information.
In order to optimize the radial quadrature grids, we modified

an approach previously used to optimize auxiliary basis sets in
DF-MP2.49 This approach chose auxiliary basis functions to
minimize the objective function

∑
ε ε ε ε

Δ = −
|⟨ || ⟩ − ⟨ || ⟩ |

+ − −
ij ab ij ab1

4 iajb i j a b

exact approx
2

(29)

evaluated over a set of small molecules, where the double bar
denotes an antisymmetrized two-electron integral. We adopt a
similar approach to optimize the Handy grids tailored
specifically to represent the ERIs in LS-THC-DF-MP2. We
avoid optimizing the Handy grids with molecules where the
number of grid points is high relative to the basis set size, since
the THC integral approximation reproduces the DF integrals
exactly when the number of grid points is large. Accordingly,
the molecules in our training set (see Supporting Information
Table S1) are significantly larger than those used to optimize
auxiliary basis sets for DF-MP2. The optimization begins with
an initial guess from a trimmed R-DVR grid that has
approximately half the number of radial points as the R-DVR
grid previously used in THC.64

Scheme 1. Pseudocode for the Coulomb-like Contributions
to the LS-THC-DF-MP2 Energy

Scheme 2. Pseudocode for the Exchange-like Contributions
to the LS-THC-DF-MP2 Energya

aThe size of iblock is determined by the amount of memory available.
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In order to succinctly define the objective function, we will
denote the differences between the density fitted integrals and
the LS-THC integrals as

Δ = | − |ia jb ia jb( ) ( )ij
ab

DF THC (30)

Recall from eqs 16 and 17

∑

∑ ϕ ϕ ϕ ϕ

| =

= ⃗ ⃗ ⃗ ⃗

ia jb X X Z X X

w w r r Z r r

( )

( ) ( ) ( ) ( )

PQ
i
P

a
P PQ

j
Q

b
Q

PQ
P Q i P a P

PQ
j Q b Q

THC

(31)

which clarifies the dependence of the THC integrals on the
placement of the angular and radial coordinates of the
quadrature points. We define the objective function to be
minimized as

∑

∑
ε ε ε ε

=

Δ + Δ − Δ

+ − −

∈
O

E

m m m

1

( ( )) ( ( ) ( ))
m m

iajb

ij
ab

ij
ab

ij
ba

a b i j

test set
MP2

2 1
2

2

(32)

where m labels the molecules in the test set and Em
MP2 is the

MP2 energy formed from exact ERIs (without the THC or DF
approximations) for the mth molecule. The inner sum is equal
to the DF-MP2 energy plus the LS-THC-DF-MP2 energy
minus twice the MP2 energy formed with mixed integrals. This
will be proportional to the MP2 energy for each molecule and
therefore we weight each molecule contribution in order to
ensure that all molecules in the test set contribute equally to the
objective function.49 The Broyden−Fletcher−Goldfarb−Shan-
no (BFGS) optimization approach, applying Brent’s line search
algorithm, is used to optimize the radial nodes.71−75

IV. COMPUTATIONAL DETAILS
LS-THC-DF-MP2 has been implemented in a development
version of the PSI4 quantum chemistry package.76 For the LS-
THC-DF-MP2 and DF-MP2 calculations, we use Dunning’s cc-
pVXZ basis with the cc-pVXZ-RI fitting basis set (where X =
D,T). In the preceding Hartree−Fock calculations, we use the
cc-pVXZ-JKFIT fitting basis set.49,50,77 All THC calculations
reported here use the LS-THC-DF-MP2 approach; other THC
variants are possible, as discussed in our previous work.57,58

The cc-pVTZ basis set has been used with the weighted least-
squares THC variant, but this work is the first to present LS-
THC-DF-MP2/cc-pVTZ results.59 All tests for timing purposes
are performed using a single core on a quad-core AMD
Opteron 2376 processor running at 2.3 GHz.
IV.A. Grid Optimization Training Set. Full details of the

molecules used as a training set for the cc-pVDZ and cc-pVTZ
grid optimizations are given in Table S1 and Section VII.A of
the Supporting Information. The 52 molecules in the THC
training set were selected to optimize grid parameters for
hydrogen, boron, carbon, nitrogen, oxygen, and fluorine. These
molecules range in size from 12 atoms to 42 atoms and include
dipeptides, nucleobases, dyes, hydrocarbons, boronated mole-
cules, and fluorinated molecules. The training set geometries
were optimized at the B3LYP/6-31G* level.
IV.B. Test Sets. After the grids were optimized using the

training sets, we then chose different sets of molecules to test
the performance and accuracy of the optimized grids. These

test sets include water clusters, alkanes and alkenes, polypeptide
conformations, and nucleobase pairs. Geometries for all of the
molecules in the test sets either are provided in the Supporting
Information (Sections VII.B and VII.C) or are available from
previous work.
The performance improvements from the grid optimization

are demonstrated with a set of water clusters ranging from
(H2O)10 to (H2O)50. Here, we compare the accuracy using LS-
THC-DF-MP2 with our previous R-DVR grids and with the
optimized grids reported in this article. We also include larger
water clusters up to (H2O)150 in order to demonstrate the
feasibility of large molecules with LS-THC-DF-MP2. The
geometries for these water clusters were obtained by taking
snapshots from a molecular dynamics simulation using the
TIP3P force field.57,78

We test the accuracy of conformational energies using the
torsional potential of 1,3,5,7-octatetraene and the set of 27
alanine tetrapeptide conformations reported by DiStasio et al.79

The E and Z octatetraene geometries were optimized at the
MP2/cc-pVDZ level using MOLPRO, version 2010.1.80

Remaining octatetraene geometries were obtained by linear
interpolation in internal coordinates between the optimized E
and Z end points. The alanine tetrapeptide conformations
follow the same numbering scheme given by DiStasio et al.
These geometries were optimized by DiStasio et al. at the HF/
6-31G** level of theory.
We demonstrate the practical scaling behavior of LS-THC-

DF-MP2 using a set of linear alkanes (from C4H10 through
C20H42).

58,81 These scaling tests are carried out with both cc-
pVDZ and cc-pVTZ basis sets. We also explore the accuracy of
the LS-THC-DF-MP2 method in different basis sets using a set
of small water cluster geometries previously optimized at the
MP2/heavy-aug-cc-pVTZ level by Bates et al.81

The accuracy of LS-THC-DF-MP2 for weak interactions is
tested using the nucleobase pair test set (JSCH) constructed by
Jurecǩa and co-workers.82 The JSCH set contains three types of
interaction motifs: hydrogen bonding, interstrand, and stacked
bases. Geometries in the JSCH set containing sulfur were
excluded from this study because we have not yet performed
grid optimization for the third-row elements (although this is
planned). The JSCH set includes both optimized and
experimental geometries.82 We adopt the geometry reassign-
ments suggested by Burns et al.83

Finally, we assess the accuracy of LS-THC-DF-MP2 for
barrier heights by using a set of pericyclic reactions. The
geometries used here (reactants, products, and transition
states) were optimized at the B3LYP/6-31G* level by Guner
and co-workers.84

V. RESULTS

V.A. Water Clusters. In order to demonstrate the
improvements made by the Handy grid optimization
procedure, Table 1 compares the LS-THC-DF-MP2 results
for a set of water clusters from (H2O)10 to (H2O)50 using the
original R-DVR grids, the trimmed R-DVR grid used as an
initial guess in the optimization, and the optimized Handy
grids. Notice that the LS-THC-DF-MP2 results with the
optimized grids use significantly fewer grid points to achieve a
similar level of accuracy as that of LS-THC-DF-MP2 results
with the R-DVR grids. The compact, optimized Handy grids
improve the applicability of LS-THC-DF-MP2 to large
chemical systems.
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Figure 1 shows the absolute error incurred by the THC
approximation (compared to DF-MP2) for a set of water

clusters ranging from (H2O)10 to (H2O)150. As expected from
any integral approximation, the error does increase with
increasing system size (roughly linearly). This behavior is also
observed for the error of DF-MP2 compared to that of
canonical MP2 with the exact four-index ERIs. The important
point is that the magnitude of the THC error is very small:
usually 2 orders of magnitude less than the DF error (which is
already widely considered to be acceptable) and always less
than 0.1 kcal/mol in the results shown in Figure 1. Thus, the
THC approximation is well within the 1 kcal/mol bound often
cited as constituting chemical accuracy.
V.B. Conformational Energies. The results for the

rotation about the central bond of 1,3,5,7-octatetraene are
given in Figure 2. The MP2, DF-MP2, and LS-THC-DF-MP2
results are graphically indistinguishable. Even with the very
sparse grids being used, the potential energy curve from LS-
THC-DF-MP2 is quite smooth and free of numerical artifacts.
Some statistical analysis of both relative and absolute errors is
presented in Table 2, where we report separately the error
arising from the DF and THC approximations. These data
show that the absolute energy error arising from the THC
approximation is more than 2 orders of magnitude less than the

error arising from the DF approximation. The THC
contribution to errors in energy differences (denoted relative
energy error in Table 2) along this torsional curve is negligible
and also smaller than the DF contribution.
The accuracy of LS-THC-DF-MP2 and DF-MP2 energies

compared to that of conventional MP2 for 27 different alanine
tetrapeptide conformations is shown in Figure 3. The THC
approximation introduces less than 0.05 kcal/mol error on top
of the roughly 0.1 kcal/mol error introduced by the DF
approximation. Both LS-THC-DF-MP2 and DF-MP2 correctly
predict the ordering of conformational energies compared to
that with the MP2 calculation. Thus, LS-THC-DF-MP2 is
quantitatively accurate with respect to DF-MP2 and MP2 for
conformational energies of a relatively large system. Further
details are included in Sections III and IV of the Supporting
Information. Some statistics of the errors introduced by DF and
THC are provided in Table 3. We point out that the THC
errors in conformational energies are almost an order of
magnitude smaller than the corresponding errors in absolute
energies, indicating favorable error cancellation for relative
properties. We also note that DF-MP2 has already been widely
accepted, suggesting that any additional errors introduced by
the THC approximation are negligible.

V.C. Basis Sets. The grid optimization scheme was used to
optimize separate THC grids for use with the cc-pVDZ and cc-
pVTZ basis sets. The number of grid points NP in the
optimized cc-pVDZ grids is approximately 3 times the number
of cc-pVDZ-RI basis functions. The optimized cc-pVTZ grids

Table 1. Comparison of LS-THC-DF-MP2/cc-pVDZ with
the Original R-DVR Grids to LS-THC-DF-MP2/cc-pVDZ
with Handy Grids Built from the Parameters Used To Seed
the Grid Optimization Procedure (Trimmed R-DVR) and
LS-THC-DF-MP2/cc-pVDZ with the Optimized cc-pVDZ
Handy Gridsa

original R-DVR trimmed R-DVR optimized Handy

no. water
molecules

pts/
atom

error
(kcal/mol)

pts/
atom

error
(kcal/mol)

pts/
atom

error
(kcal/mol)

10 162 0.0004 73 0.0012 73 0.0007
20 162 0.0012 73 0.0111 73 0.0052
30 162 0.0043 73 0.0165 73 0.0096
40 162 0.0038 73 0.0226 73 0.0099
50 162 0.0081 73 0.0394 73 0.0195

aPts/atom denotes the average number of grid points per atom and
the errors are given with respect to the DF-MP2/cc-pVDZ results.

Figure 1. Error in the LS-THC-DF-MP2 energy compared to that of
DF-MP2 in kcal/mol. Both calculations used the cc-pVDZ basis and
the cc-pVDZ-RI fitting basis.

Figure 2. MP2, LS-THC-DF-MP2, and DF-MP2 energies relative to
the E-geometry (180°) of 1,3,5,7-octatetraene. All calculations were
run with the cc-pVDZ basis. The cc-pVDZ-RI fitting basis set was used
for both DF-MP2 and LS-THC-DF-MP2 calculations.

Table 2. Unsigned Absolute and Relative Energy Errors
(kcal/mol) in LS-THC-DF-MP2 with Respect to MP2/cc-
pVDZ (DF+THC), DF-MP2 with Respect to MP2/cc-pVDZ
(DF), and LS-THC-DF-MP2 Relative to DF-MP2 (THC) for
the Rotation of 1,3,5,7-Octatetraene about the Central
Bonda

DF + THC DF THC

max unsigned error 0.46106 0.45938 0.00168
average unsigned error 0.45779 0.45741 0.00078
max relative energy error 0.00772 0.00527 0.00245
average relative energy error 0.00469 0.00348 0.00121

aBoth DF-MP2 and LS-THC-DF-MP2 were calculated with the cc-
pVDZ basis and the cc-pVDZ-RI auxiliary basis.
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are somewhat larger, with NP equal to approximately 4 times
the number of cc-pVTZ-RI basis functions. We investigate the
effect of basis set quality on the observed scaling by using a set
of linear alkanes. As shown in Figure 4, the scaling is practically

unaffected by the basis set quality. Slight differences in the
observed scaling for the cc-pVDZ and cc-pVTZ calculations are
in part due to the different sizes of the optimized grids relative
to the analogous RI basis sets. Furthermore, the observed
scaling is nearly cubic, in spite of the fact that the formal scaling
for LS-THC-DF-MP2 is quartic. The origin of this is the
dominance of lower-scaling terms and our use of highly
efficient matrix multiplication routines for the most computa-
tionally involved steps.
In order to test the accuracy of the THC approximation with

different basis sets, LS-THC-DF-MP2 and DF-MP2 were
applied to a set of water clusters ranging in size from (H2O)3 to
(H2O)10 and using the cc-pVDZ and cc-pVTZ basis sets.
Detailed relative energies can be found in Section V of the
Supporting Information.
In Figure 5, we compare the energies (relative to the global

minimum) from DF-MP2 and LS-THC-DF-MP2 for water

decamers. Excellent agreement is obtained for both cc-pVDZ
and cc-pVTZ basis sets. The inset shows an expanded view of
the comparison for some of the low-energy structures. Figure 6
shows the maximum absolute energy error from the DF and
THC approximations for the whole set of water clusters (from
trimers to decamers). Note the different scales used for the DF
and THC errors. The DF-MP2 absolute energies are within
0.25 kcal/mol of the MP2 energies for all of the geometries in
the set. The further error from the THC approximation is less
than 0.0015 kcal/mol in all cases and completely negligible
compared to the error induced by the DF approximation.
Furthermore, the THC error is only very weakly dependent on
the basis set (cc-pVDZ compared to cc-pVTZ). As
demonstrated in Figure 1, the THC error does increase with
molecular size (and so also does the DF error), but the error is
so small that this size-dependence is unimportant.

V.D. Nucleobase Pair Interactions. The JSCH set
comprises three main geometry types, representative of the
dominant nucleobase pair interactions in DNA duplexes. The

Figure 3. Absolute and relative errors in the DF-MP2 and LS-THC-
DF-MP2 alanine tetrapeptide conformational energies (kcal/mol)
compared to those with MP2/cc-pVDZ. The zero of the energy is
chosen as the global minimum (conformer 11) for the relative energy
comparison. Both DF-MP2 and LS-THC-DF-MP2 use the cc-pVDZ
basis and the cc-pVDZ-RI auxiliary basis.

Table 3. Unsigned Relative Energy Errors (kcal/mol) of LS-
THC-DF-MP2 Compared to MP2/cc-pVDZ (DF+THC),
DF-MP2 Compared to MP2/cc-pVDZ (DF), and LS-THC-
DF-MP2 Relative to DF (THC) for a Set of Alanine
Tetrapeptide Conformationsa

DF + THC DF THC

max unsigned error 0.11203 0.09830 0.01839
average unsigned error 0.10499 0.09300 0.01199
max relative energy error 0.01061 0.00653 0.01332
average relative energy error 0.00534 0.00243 0.00647

aBoth DF-MP2 and LS-THC-DF-MP2 use the cc-pVDZ basis and the
cc-pVDZ-RI auxiliary basis.

Figure 4. Timings of LS-THC-DF-MP2 calculations for the linear
alkanes CH3(CH2)2CH3 to CH3(CH2)18CH3 using the cc-pVDZ and
cc-pVTZ basis sets. These timings were obtained using one thread on
a 2.3 GHz quad-core AMD Opteron processor.

Figure 5. Comparison of DF-MP2 and LS-THC-DF-MP2 for a set of
(H2O)10 configurations (representative example shown in the inset)
computed with the cc-pVDZ and cc-pVTZ basis sets. All energies are
relative to the lowest energy configuration (which is the same in DF-
MP2 and LS-THC-DF-MP2). The cc-pVDZ and cc-pVTZ DF-MP2
and LS-THC-DF-MP2 calculations used the cc-pVDZ-RI and cc-
pVTZ-RI fitting basis sets, respectively. Lower right inset shows the
same data on an expanded scale.
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hydrogen-bonded geometries consist of coplanar nucleobase
pairs, whereas the interstrand geometries involve adjacent base
pairs on different strands. The stacked complex type is
composed of adjacent base pairs on the same strand. The
interaction energies reported include the counterpoise
correction. All interaction energies can be found in Section
VI of the Supporting Information. Figure 7 shows the
percentage error in the interaction energies computed by LS-
THC-DF-MP2 compared to the DF-MP2 interaction energies.
The average percentage error for the three different classes is

denoted with a solid line and is less than 1% for all three cases.
Many of the interaction energies being computed in this test set
are quite small (<1 kcal/mol), and one should bear this in mind
when assessing the percentage error. Indeed, the largest
absolute error arising from the THC approximation for an
interaction energy in this test set is less than 0.05 kcal/mol.

V.E. Reaction Barrier Heights. To probe the accuracy of
the THC approximation for computing barrier heights, a subset
of reactions was taken from a pericyclic reaction database.84

These reactions are summarized in Figure 8, along with the

estimated reaction barrier heights computed with canonical
MP2 and the cc-pVDZ basis set. The estimated reaction barrier
heights in this work refer to the difference in the transition state
and reactant energies without zero-point corrections. The
geometries for the reactants and transition states are taken from
previous work without reoptimization.
Figure 9 compares the unsigned errors in the computed

barrier heights using LS-THC-DF-MP2 and DF-MP2 relative
to that with canonical MP2. As can be seen, the error
introduced by the THC approximation is very small and less
than the error introduced by the widely used DF approx-
imation. The ring opening of cyclobutene (reaction 6) has the
highest total unsigned error compared to that of the other
reactions, but even this is well within chemical accuracy (<0.3
kcal/mol). Curiously, both DF-MP2 and LS-THC-DF-MP2
underestimate all of the pericyclic reaction barrier heights.
Quantitative statistics for the errors are given in Table 5. For all
of the reaction barrier height estimations, LS-THC-DF-MP2
and DF-MP2 are in good agreement with the canonical MP2
results. Furthermore, the error introduced by the THC
approximation is an order of magnitude less than the error
introduced by the DF approximation.

VI. CONCLUSIONS
DF-MP2 benefits markedly from the use of optimized auxiliary
basis sets, so it is not surprising that the LS-THC-DF-MP2
method similarly benefits from an optimized grid. To avoid the

Figure 6. For the set of water clusters (H2O)n with n = 3−10, the
maximum absolute errors (kcal/mol) of LS-THC-DF-MP2 with
respect to MP2 were determined. These total errors are broken into
the error components of DF-MP2 with respect to MP2 (DF) and LS-
THC-DF-MP2 relative to DF-MP2 (THC). Notice that the scales for
the DF and THC errors differ by 2 orders of magnitude. The cc-pVDZ
and cc-pVTZ basis sets were used with the cc-pVDZ-RI and cc-pVTZ-
RI fitting basis sets, respectively, for the DF-MP2 and LS-THC-DF-
MP2 calculations. The MP2 reference calculations use the cc-pVDZ
and cc-pVTZ basis sets.

Figure 7. Percentage error in LS-THC-DF-MP2/cc-pVDZ counter-
poise-corrected interaction energies of nucleobase pairs (from the
JSCH database) relative to DF-MP2/cc-pVDZ counterpoise-corrected
interaction energies. The cc-pVDZ-RI fitting basis was used for the
DF-MP2 and LS-THC-DF-MP2 calculations. Results are separated
into three classes of geometric configurations, and the solid bar
represents the average percentage error within each of these
subgroups.

Figure 8. Set of pericyclic reactions used to calculate barrier heights.
The approximate barrier heights are computed at the MP2/cc-pVDZ
level.
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issue of unnecessarily dense grids, this work outlined a
procedure to optimize the locations of radial nodes in order
to form compact grids that achieve a high level of accuracy. The
level of accuracy achieved using these grids indicates that
optimizing the radial nodes for each element results in a more
compact grid representation of the relevant physical space
surrounding that element within the molecular environment.
This procedure also allows the extension of THC to larger basis
sets, and we demonstrated this for triple-ζ cc-pVTZ basis sets.
The LS-THC approach has no system-specific approxima-

tions and should be applicable, therefore, to any system of
interest. For example, it is not affected by electronic
delocalization that can cause difficulties in local approximations.
We applied LS-THC-DF-MP2 to test sets emphasizing
conformational energetics, interaction energies, and reaction
barrier heights. In all cases, the LS-THC-DF-MP2 results were
well within chemical accuracy. Energy differences, such as
conformational energies and reaction barrier heights, benefit
from a favorable cancellation of errors. This is in contrast to
many numerical grid-based approaches where the associated
errors are often quite random.
This work is also the first to investigate the LS-THC

approximation with increasing basis set quality. Similar to the
DF approximation, LS-THC exploits rank sparsity in the ERIs.
In DF methods, the size of the auxiliary fitting basis set needed
for a given accuracy increases slowly relative to the basis set
density. This is because the rank of the ERIs does not increase

much as the basis set density increases. We believe that this
should also be true for the auxiliary grids used in LS-THC, and
the comparison of the grids for double-ζ and triple-ζ basis sets
in this article supports that. This is cause for optimism
regarding the ability of THC to efficiently accommodate larger
basis sets including diffuse functions. Work is in progress to
demonstrate this and also to adapt the outlined procedure to
optimize THC grids for coupled cluster methods, where the
THC approximation has already been employed effec-
tively.59−62
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