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ABSTRACT: Molecular dynamics simulations are helpful tools
for a range of applications, ranging from drug discovery to protein
structure determination. The successful use of this technology
largely depends on the potential function, or force field, used to
determine the potential energy at each configuration of the system.
Most force fields encode all of the relevant parameters to be used
in distinct atom types, each associated with parameters for all parts
of the force field, typically bond stretches, angle bends, torsions,
and nonbonded terms accounting for van der Waals and
electrostatic interactions. Much attention has been paid to the
nonbonded parameters and their derivation, which are important
in particular due to their governance of noncovalent interactions, such as protein-ligand binding. Parametrization involves adjusting
the nonbonded parameters to minimize the error between simulation results and experimental properties, such as heats of
vaporization and densities of neat liquids. In this setting, determining the best set of atom types is far from trivial, and the large
number of parameters to be fit for the atom types in a typical force field can make it difficult to approach a true optimum. Here, we
utilize a previously described Minimal Basis Iterative Stockholder (MBIS) method to carry out an atoms-in-molecules partitioning of
electron densities. Information from these atomic densities is then mapped to Lennard-Jones parameters using a set of mapping
parameters much smaller than the typical number of atom types in a force field. This approach is advantageous in two ways: it
eliminates atom types by allowing each atom to have unique Lennard-Jones parameters, and it greatly reduces the number of
parameters to be optimized. We show that this approach yields results comparable to those obtained with the typed GAFF 1.7 force
field, even when trained on a relatively small amount of experimental data.

1. INTRODUCTION

Molecular dynamics (MD) simulations are useful for a broad
range of applications, including protein folding studies,1 drug
discovery,2 and the determination of liquid structure and
properties.3 Various approaches have been taken to improve
the ability of simulations to explore the thermodynamically
relevant parts of configuration space, including hardware
advancements4−9 and more effective sampling algorithms.10−14

While these efforts have dramatically improved our ability to
generate well-converged results, errors persist in simulations, as
highlighted for example, in the SAMPL series of blinded
prediction exercises.15−21 Therefore, attention is now turning
again to the potential functions, or force fields (FF), as sources
of error, as recently reviewed.22

Currently, most biomolecular simulations are still carried out
with FFs having a simple functional form comprising harmonic
bond-stretches and angle-bends, sinusoidal torsional terms,
harmonic improper dihedrals, Lennard-Jones (LJ) interactions
for van der Waals forces, and Coulombic interactions among
atom-centered point charges for electrostatic interactions and
hydrogen bonding.23 This common functional form has the

merit of being supported by many well-developed simulation
packages and of affording great computational speed and
therefore effective conformational sampling. From this starting
point, a number of strategies may be adopted to improve the
accuracy of the FF. One is to move to a functional form that
captures the physics more faithfully and in more detail. For
example, one may add terms that explicitly account for effects,
such as electronic polarizability,24−27 that are accounted for
only implicitly, at best, in the common functional form; or one
may substitute a more realistic form for an existing term, such
as a Coulombic term that accounts for charge penetration.26−31

Another strategy is to remain with today’s common functional
form and instead look for parameters, such as atomic partial
charges, torsional barriers, and Lennard-Jones well-depths and
radii, that will lead to greater accuracy when used to compute
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experimental and/or quantum chemical reference data. This
strategy may be pursued by using more, and more relevant,
experimental data in the parametrization process. For example,
data on host−guest binding thermodynamics have recently
been used to guide parameter adjustment, leading to improved
accuracy in calculated binding thermodynamics. Another
approach to improving accuracy of force fields with the
common functional form is to more comprehensively and
systematically define32 and adjust33−38 the parameters so they
more closely approach an optimal parametrization against a
fixed data set.
However, the large number of independently adjustable FF

parameters in a typical FF can make full, multidimensional
parameter optimization daunting. For example, the SMIR-
NOFF99Frost39 FF, whose list of parameters has already been
condensed through the replacement of atom-typing with direct
chemical perception, still has 35 different Lennard-Jones types
and hence 70 Lennard-Jones parameters. Simultaneous
optimization of these parameters becomes particularly
challenging when evaluating the objective function requires
running time-consuming simulations, such as if one wishes to
tune parameters against liquid-state properties. Even more
extensive sampling of parameters will likely be needed if one
moves from optimization to Bayesian sampling40−42 in the
parameter space. If either an optimization or a Bayes sampling
algorithm misses a key sector of parameter space, the accuracy
of the resulting parametrized FF will not be a measure of the
quality achievable within the common functional form. This
situation is problematic for at least two reasons. First,
simulations using the incompletely optimized FF will not be
as accurate as they could have been. Second, the resulting
errors may provide misleading guidance regarding the need to
move to a more complex functional form. Consequently, a
methodology of fitting FFs that use fewer adjustable
parameters would in principle make the problem more
tractable.
We therefore propose a step toward reducing the

dimensionality of the adjustable parameter space of the
common FF functional form. The basic idea (Figure 1) is to
use a QM calculation on the molecule to be parametrized (or
on a suitable fragment of a large molecule) to extract
properties of the electron density that correlate with the FF
parameters to be assignedhere the Lennard-Jones parame-
ters of each atom in the molecule. We then set up a
mathematical mapping from the electron density to the
targeted FF parameters. The mapping is outfitted with a
small set of adjustable parameters, and it is these mapping

parameters, not the targeted FF parameters, that are subjected
to optimization or sampling based on calculations of
experimental observables. This approach reduces the number
of adjustable parameters, because the FF parameters assigned
to each atom in the molecule are largely controlled by the QM
results. Only the mapping parameters are adjusted to maximize
the agreement of simulated properties with experiment. Thus,
the dimensionality of the optimization problem is greatly
reduced. By the same token, this approach allows each atom in
a molecule to have unique FF parameters without requiring a
large number of atom types.
The present study aims to prove the principle of this

approach by demonstrating that such a QM-to-FF mapping,
trained to generate Lennard-Jones FF parameters that best
replicate a small set of experimental liquid-state data, yields a
competitive level of accuracy for an informative set of
properties. It thus sets the stage for future applications aimed
at building a comprehensive FF for general use. The current
implementation builds on promising approaches from other
groups,28,43−50 as it uses Slater orbitals to model the electron
density associated with each atom in the molecule and extracts
key correlates of the LJ parameters from these fits. The present
FF-development approach is therefore termed the Slater-
Derived Lennard-Jones (SDLJ) method. The following
subsections detail the concepts and methodology, describe
how the mapping parameters are adjusted against experimental
liquid-state data for a small training set of compounds, and
report on the quality of the results when the trained method is
tested on a larger, nonoverlapping set of compounds and
additional observables. Implications and prospects are
considered in the Discussion section.

2. METHODS

2.1. Overview. The present method provides an approach
to mapping from the electronic structure of a molecule,
obtained from a quantum mechanical (QM) calculation, to
suitable σ and ε Lennard-Jones parameters for each of its
atoms. The mapping contains two adjustable parameters for
each element (C, N, O, H), except that polar and nonpolar
hydrogens have separate parameters. Here a polar hydrogen is
defined simply as one directly bound to a nitrogen or oxygen
atom. We separated polar and nonpolar hydrogens because
initial studies showed that lumping all hydrogens made it
impossible to reach a set of LJ parameters that would afford
competitive accuracy (results not shown). We use the
ForceBalance software34 to optimize the 10 mapping
parameters in order to minimize the error of simulated liquid

Figure 1. Generic scheme for use of a parametrized mapping from QM results to FF parameters, with benzene as an example.
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state properties vs experimental measurements. The trained
mapping is then tested against the properties of a larger set of
liquids, and the results are compared with those obtained with
the pioneering and widely used GAFF force field.51 For this
proof-of-concept study, we focused on consequences of
adjusting only Lennard-Jones parameters, thus the electrostatic
interactions are modeled with atom-center partial charges
assigned with the AM1/BCC method and all non-LJ force field
terms were drawn from GAFF 1.7 in accordance with
established procedures.
The mapping from a molecule’s electronic structure to σi

and εi for each of its atoms, i, uses an atoms-in-molecules
(AIM) approach similar, but not identical, to ones that have
been published before.43,44 We model the electron density
around each atom i in terms of a Slater orbital, where the
electron density decays exponentially with distance from the
nucleus: ρi(r) ∝ exp(−βir). The decay coefficient βi associated
with each atom i then is used to assign both the effective
atomic polarizability and the effective ionization potential, both
key quantities in the LJ interaction term. The following
subsections detail each step summarized in this overview. The
code used to go from a QM result to Lennard-Jones
parameters is available at (https://github.com/SKantonen/
PyBLJ). It is written in Python, and its inputs are a Lebedev
grid file and a mol2 file to generate βi coefficients for each
atom in the given mol2 structure. The level of QM to be run
can be manually set inside of the code, if so desired.
2.2. Electron Density Calculations. Each molecule to be

studied was built with the open-source software Avogadro,52

and its structure was energy-minimized using the GAFF 1.7
force field. The Gaussian0953 package was used to obtain the
electron density at the CCSD/cc-pVTZ level of theory. CCSD
was chosen as it is considered to be among the most accurate
post Hartree−Fock methods for calculations on small
molecules.54 We found that the values of β changed by <1%
when the size of the basis set was increased further. The
electron density distribution around each atom was computed
using spherical Lebedev grids (110 points, order 17)55 and a
uniform radial grid of 0.05 Å spacing out from 0−12 Å. The
code used to generate these grids is built into the β parameter
fitting code, using the aforementioned spacings and grid sizes.

2.3. Fitting Electron-Density Decay Coefficients
(Beta) to Atoms-in-Molecules. While there exist multiple
useful electron partitioning methods,56−58 we chose to use the
Minimal Basis Iterative Stockholder (MBIS) method of
Verstraelen.59 The MBIS method partitions the total electron
density of the molecule (Section 2.2) into atom-centered Slater
orbitals centered on atoms i, in a manner that minimizes the
Kullback-Liebler (KL) divergence59 between the electron
density distribution provided by a QM calculation ρ(r) and
the sum of the atomic densities. The MBIS method is
attractive because it allows pro-densities to vary (allowing
individual atoms to have unique parameters governing their
pro-densities as opposed to predetermined pro-densities) and
has already been successfully applied to force field develop-
ment.46,59

Thus, each atom, i, is assigned a “pro-density”, ρi(r), of
Slater form whose integral over all space gives the total number
of electrons assigned to the atom, Ni. The Slater orbital of
atom i is characterized by βi, the spatial decay constant of the
electron density.60 This quantity is expected, on physical
grounds, to correlate with both the size and the dispersion
interactions of the atom,60,61 as detailed below.
As previously shown, the KL divergence is minimized by an

iterative procedure, diagrammed in Figure 2. For a given
iteration, k, of the MBIS method

∫ ρ
ρ β

ρ
=+N

N
r

r

r
r( )

( , , )

( )
di k

i k i k i k
, 1

, , ,

0,k (1)

∫β ρ
ρ β
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= | − |+ N

N
r

r

r
r R r3 ( )
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i k i k i k
i, 1 ,

, , ,

0,k (2)

Here ρi,k(r) is the pro-density around atom i at iteration k; βi,k
is the estimate of βi for atom i at iteration k; ρ0(r) is the sum of
all atomic pro-densities at position r; and Ri is the location of
the nucleus of atom i. In practice, these integrals are estimated
as sums over Lebedev grids, as noted above:

∑ ρ
ρ β

ρ
=+

=

N
N

r
r

r
( )

( , , )

( )i k
g

N

g
i k g i k i k

g
, 1

1

, , ,

0

p

(3)

Figure 2. Schematic of the iterative stockholder method used to fit β and N for each atom-in-molecule i to the molecular electron density from a
QM calculation. Symbols are defined in the main text.
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For the sums, the density at each grid point g is considered,
with the sum being over all Np grid points, each located at rg.
As per the MBIS method, an initial value, corresponding to
iteration k = 1, is chosen for all Ni1 and βi1, allowing for the
determination of starting pro-densities via

ρ
β
π

= β− | − |N
er( )

8i
i i r R

1
1

3
( )i i1

(5)

These pro-densities are used to generate Ni,k and βi,k for the
next iteration (k = 2), and the process is iterated until the
changes in N and β between iterations k and k+1 fall below
some threshold, here a 0.05% absolute change. The initial
values of these quantities are detailed in the following
paragraph.
In accord with Verstraelen et al., we assigned and fit two pro-

densities to each non-hydrogen atom. (Only one pro-density is
used for each hydrogen atom.) The “core” pro-density captures
electrons held close to the nucleus, while the “valence” one
includes all other electrons, and the number of electrons in
core versus valence is adjusted as part of the procedure. Thus,
we allow two β’s and two N’s to be fit for each non-hydrogen
atom, and we use only the valence β to generate LJ parameters.
The rationale is that core electrons only contribute to
nonbonded interactions at distances much too close to be
relevant, mostly due to exchange repulsion.61 The initial values
of N are set to 2 for the core pro-density and the number of
valence electrons of the element for the valence pro-density.
Initial values of βi for all atoms are set to 12 and 4 Å−1 for the
core and valence orbitals, respectively. These values, which
correspond to those obtained for a single nitrogen atom, suffice
to generate convergent results in the iterative procedure just
outlined. As expected, core occupancy was on average very
near two electrons, but the addition of the core exponential
allowed for a better fit of the valence exponential. Values of β
typically converge relatively quickly, with the final value being
insensitive to the starting value, as shown in Supplementary
Figure 1.
2.4. Mapping QM Results to Lennard-Jones Param-

eters. The Lennard-Jones model gives the van der Waals
interaction energy between atoms i and j as

ε
σ σ

= − = −E
A

r

B

r r r
4ij

ij

ij

ij
ij

ij

ij

ij

ij
LJ 12 6

12 6i

k

jjjjjjjj
i

k
jjjjjj

y

{
zzzzzz

i

k
jjjjjj

y

{
zzzzzz

y

{

zzzzzzzz
(6)

where Aij, Bij, σij, and εij may be obtained from atomic “self”
parameters σi, σj, εi, and εj by mixing rules, such as σij = 0.5(σi
+ σj) and εij = (εiεj)

1/2.62 The next two subsections describe
how σi and ϵi are assigned to each atom in a molecule, based
on the QM electron densities.
2.4.1. Lennard-Jones Sigma. The parameter σ is essentially

an atomic diameter, and β−1 is proportional to the expectation
value of the distance of the electron density from the nucleus,59

so we write

σ
β

= σC
i

e

i

, i

(7)

Here ei is the element of atom i, and Cσ,ei is the associated
element-specific mapping parameter, which is adjusted with
ForceBalance34 (Section 2.5).

2.4.2. Lennard-Jones Epsilon. The coefficient of the
dispersion component of the Lennard-Jones interaction (eq
6) can be estimated from the London equation63

ηη

η η
α α=

+
B

3
2ij

i j

i j
i j

(8)

where η and α are the ionization energy and polarizability,
respectively, of the subscripted atoms. We follow Tkatchenko43

in writing the homonuclear B coefficient in the form

η∝B Vi i i
2

(9)

where ηi and Vi are, respectively, the effective ionization energy
and volume of atom i. (This assumes that the polarizability is
simply proportional to volume;80 it is worth noting that Gould
has argued for an element-specific scaling between these
quantities.78) As noted above, β−1 is related to the atomic
radius, so Vi

2 ∝ β−6. For a single atom, the ionization energy is

given by η = β
8

2

,61 and we assume the same to be true for the

effective ionization energy of an atom in a molecule. This is
distinct from the Tkatchenko method, in that we allow each
atom to have a unique effective ionization energy, which
contributes to the determination of the LJ parameters. Hence,
inserting the element-specific fitting parameter CB,ei, we have

ηβ β= =− −B C
C

8i B e i i
B e

i,
6 , 4

i

i

(10)

Intuitively, the lower the value of βi, and hence the more
diffuse the electron density, the greater the dispersion
coefficient. The element-specific fitting parameters CB,ei are
adjusted with ForceBalance, as detailed in Section 2.5.79,80

From the expressions above, we can also derive that

ε
η β

= =
σ σ

C

C

C

C4 32i
B e i

e

B e i

e

,

,
6

,
2

,
6

i

i

i

i (11)

Since ε corresponds to the depth of the LJ energy well, this
says that a more diffuse electron density corresponds to a
smaller well-depth. This trend reflects the fact that a more
diffuse electron density also increases σ and thus causes the
energy well to be at a greater distance where dispersion forces
will be weaker. Note that some prior methods of deriving the
dispersion term by AIM methods have neglected variations in
the ionization energy43−45 among atoms. From the present
expression for ε, it is apparent that this neglect causes all atoms
of a given element to have the same value of ε. In the present
approach, different atoms of a given element can have different
values of both σ and ε. These issues are further considered in
the Discussion section.

2.5. Optimizing the Elemental Mapping Parameters
Using ForceBalance. We used ForceBalance,34 a software
package that automatically adjusts fitting parameters using
parametric gradients of simulated properties, to optimize the
mapping parameters Cσ,e and CB,e for the elements carbon,
nitrogen, oxygen, and separately for polar and nonpolar
hydrogen. These mapping parameters were adjusted so that
simulations of seven pure organic liquids (Section 2.6) with
the resulting LJ parameters would yield properties close to
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experiment. The adjusted mapping parameters were then
tested by using simulations to compute the properties of 24
pure organic liquids outside the training set and comparing
these with experiment. The test- and training-set molecules
were chosen to be small and simple, so that simulations could
be rapidly converged, while still representing significant
chemical diversity. In addition, to test transferability, we
included test-set compounds with functional groups absent
from the training set. For this initial study, atom-centered
partial charges were assigned with the AM1/BCC method,64 as
noted above, and bonded parameters were drawn from
GAFF,65 using the program Antechamber.66 The iterative
ForceBalance process was initiated from a set of mapping
parameters that minimize the sum of squared deviations
between the mapped LJ parameters and GAFF 1.7 LJ
parameters for the training set compounds. The stopping
criterion for ForceBalance was essentially chosen manually, as
the history of the objective function was evaluated to see if any
meaningful improvements were being made. When the
objective function had fallen significantly from its starting
value and appeared to plateau, the ForceBalance program was
halted, and the parameters were evaluated.
For each training set compound, liquid phase simulations

were performed with the AMBER molecular dynamics suite67

to compute the heat of vaporization and density in the NPT
ensemble at 298 K and 1 atm. The Berendsen barostat and
Langevin thermostat were used for all production simulations,
and SHAKE was used to constrain all R−H bond lengths. For
each calculation, 1000 molecules were used in the simulation
box, and production simulations of 12 ns at 2 fs time steps
were run. A cutoff of 8 Å was used for both the Particle Mesh
Ewald and Lennard-Jones calculations. The mapping param-
eters were optimized over multiple ForceBalance iterations so
that they produced LJ parameters that minimize a regularized,
weighted least-squares objective function computed from the

squared deviations of the calculated observables and
experimental reference data.34

The ForceBalance objective function was described in
previous work34 and is briefly summarized here. It has a
hierarchical structure with the top level given by the formula

∑= + | |
∈

L w L wk k k( ) ( )
T

T Ttot
targets

reg
2

where the total objective function Ltot depends on the
optimization variables k and is equal to the sum of
contributions from the parametrization targets LT weighted
by wT, plus a Tikhonov regularization term weighted by wreg.
Each parametrization target is a weighted sum of contributions
for one or more properties:

∑=
∈

L w Lk k( ) ( )T
j

j
T

j
T

properties

( ) ( )

In this study, the target weights wT and the property weights
wj
(T) were set to unity for both properties used (density and

heat of vaporization), allowing each to contribute equally. The
term for each property Lj

(T)(k) is given by a weighted and
normalized sum over individual data points

=
∑ −

∑

∈

∈

L
d

w y y

w
k

k
( )

1
( )

( )
j
T

j
T

p jp
T

jp
T

jp
T

p jp
T

( )
( ) 2

points
( ) ( )

,ref
( )

2

points
( )

where yjp
(T) and yjp,ref

(T) are, respectively, the simulated and
reference data point for property j and point p within target T.
The quantity dj

(T) is a scaling factor used to normalize and
remove physical units for property j and has the same effect as
an inverse square weight; we used values of 30 mg/ml for
density and 0.3 kJ/mol for heat of vaporization.
The optimization variables k are mapped to a set of physical

parameters K by an exponential mapping as Kλ = Kλ
(0) exp[kλ],

where Kλ
(0) represents the original parameter values. Under this

Figure 3. Optimization of the ten QM-to-FF mapping parameters. Quantum mechanical calculations are carried out on training set molecules to
compute beta for each atom. These values are mapped to LJ parameters using the mapping parameters. Simulations are carried out to compare
simulation results to experiment, and the parameters are iteratively updated based on the gradient of the objective function in parameter space.
Once the mapping parameters are optimized, they are saved and used to generate LJ parameters for other molecules.
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exponential mapping, the physical parameters do not change
sign from their original values. The regularization term may be
expressed in terms of mathematical parameters as

∑ ∑| | = =
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During the optimization, FB computes the gradients of
simulated properties with respect to force field parameters, i.e.,
∇kyjp

(T)(k), and uses them to construct the gradient and
approximate Hessian of Ltot in the parameter space. In this
work, yjp

(T)(k) represents ensemble properties obtained from
thermodynamic sampling, and ∇kyjp

(T)(k) is computed using
thermodynamic fluctuation formulas as described in previous
work.68

The overall computational workflow is diagrammed in
Figure 3. Once the mapping parameters were optimized, they
were used to generate LJ parameters for a larger test set
consisting of 24 molecules, for which densities, heats of
vaporization, and heat capacities were calculated and compared
with experimental numbers. The uncertainties reported for the
calculated properties were obtained by a previously described
blocking method.69,70

2.6. Training and Test Data. When optimizing and
testing force field parameters against experimental observables,
it is essential to use reliable data. Here, we obtained data from
the ThermoML71 archive provided by NIST and used a
separate compilation of liquid properties of organic mole-
cules72 as a cross-check to ensure accurate numbers for both
the training and test sets. For some values from the
ThermoML archive, the values were taken as averages over
multiple experimental sources. While experimental uncertain-
ties are not typically provided for these data, the few
compounds that do have uncertainties typically show them
to be of the order of less than 1% standard deviation (for all
properties examined), even when measurements that are nearly
a century old73 are included when calculating average and
standard deviations. The experimental uncertainties for these
compounds are reported as under ∼5% for both heats of
vaporization and densities. The training set comprised the
following seven pure liquids: methanol, ethanol, aminoethanol,
acetaldehyde, ethylamine, benzene, and acetonitrile (see Figure
4). The test set comprises the 24 additional pure liquids listed

in Table 3. In order to rigorously assess transferability of the
fitted parameters, we chose test-set compounds with functional
groups not in the training set. Radial distribution functions
were digitized from figures in various sources74−76 to allow
comparison of radial distribution functions calculated from
simulations of both SDLJ and GAFF parameters. Radial

distribution functions were computed for the present
simulations with the cpptraj program.77

As the observation may be relevant for other studies that rely
on pure liquid properties, it is perhaps worth also reporting
that a few compounds initially included in the training or test
sets were found to undergo very slow conformational
interconversions, no matter what starting conformer was
used, even in simulations as long as 10 ns. In particular, we
observed few or no syn-anti conversions of the proton in the
carboxylic acids formic and acetic acid, either in gas or liquid
phases. Both QM calculations and standard force fields point
to a barrier between the two states of at least 6 kcal/mol,78 so
we do not think this problem results from the particular
parameters used here. Simulations of these molecules led to
significant convergence problems in the thermodynamic
properties, so these compounds were removed and are not
present in this study. Similarly, short esters were removed for
the same reason.

3. RESULTS

This section first reports on the optimization of the ten
elemental mapping parameters using ForceBalance and a small
training set of molecules. Then the transferability of the
resulting parameters is tested with a larger, nonoverlapping set
of 24 test molecules. The results are compared with
experiment and with corresponding simulations using GAFF
LJ parameters.

3.1. Optimization of Elemental Mapping Parameters
Using ForceBalance. As detailed in Methods, an electronic
structure calculation was run for each compound in the
training set, and the MBIS method was used to compute βi for
each atom i in each compound. (Final β values for all atoms in
each molecule in the training set are provided in Supple-
mentary Table 4.) These quantities were then used with the
expressions in Section 2.4, and after about 40 iterations of
optimization of the mapping parameters using ForceBalance
(Section 2.5), a large improvement in the ForceBalance
objective function34 was observed (Figure 5). The procedure

Figure 4. Molecules used to train the elemental mapping parameters.

Figure 5. History of objective function of training set over the entirety
of the optimization run using ForceBalance.
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led to modest additional improvement as it ran out to about 70
cycles. The values of the final Lennard-Jones parameters are
provided in Table 2 (in the standard AMBER form Rmin/2 and
ε), and the densities and heats of vaporization of the training
set molecules computed with the optimized parameters are
compared with experiment in Table 1. Final values of the
mapping parameters are provided in Supplementary Table 1.
Additionally, select mol2 and frcmod files are provided in the
GitHub repository for a few test-set molecules.
It is expected that the value of β for each atom in a molecule,

and hence the values of σ and ε assigned by this method, will
depend to some degree on the conformation used for the QM
calculation. To assess the sensitivity to conformation, we took
several snapshots of butanol from a 300 K gas-phase simulation
and used the trained parameters to compute LJ parameters for
all atoms in each conformation. As detailed in Supplementary
Tables 2 and 3, the variations across conformations are small,
with standard deviations in σ of at most 0.02 Å, and standard
deviations in ε of at most 0.001 kcal/mol.
3.2. Test-Set Validation of Optimized Mapping

Parameters. The trained SDLJ method yields densities for
the test set that agree with experiment about as well as those in
the training set and heats of vaporization with about double
the relative mean unsigned error of the training set (Figure 6,
Table 1, and Table 3). Importantly, the SDLJ parameters
provide good agreement with experiment even for compounds
with functional groups distinctly different from those in the
training set. For example, SDLJ reproduces the properties of
dioxolane and furan reasonably well and indeed more closely
than done by GAFF, although the training set includes no
substituted phenyls or furans. Taken together, these observa-
tions suggest that the parameters were not overfitted. Overall,
the new method yields accuracy on the test set similar to that
obtained with GAFF LJ parameters (Table 3 and Figure 6).
This is despite the fact that the SDLJ method has only ten
fitting parameters and was trained on only 14 observables. In
contrast, the test-set compounds span 16 GAFF atom types
and thus include 32 LJ parameters that are, at least in principle,
independently adjustable. However, it should also be noted
that GAFF was not parametrized against the present training
set of liquid properties.
At the same time, it is worth noting that some compounds

show undesirably large errors when modeled with either SDLJ
or GAFF. Examples include the density of formamide for SDLJ
and especially GAFF, the heat of vaporization of propionitrile
for SDLJ, and the heat of vaporization of o-xylene and butanol
for GAFF. Further work is needed to assess whether such

Table 1. Final Results for Training Set Moleculesa

density (mg/ml) ΔHVap (kJ/mol)

compound experimental computed ± experimental computed ±

methanol 784 762.5 0.50 31.3 36.1 0.28
ethanol 789 784.0 0.55 42.3 42.3 0.68
aminoethanol 1011 1024.8 0.34 58.0 60.2 0.71
ethylamine 688 709.1 0.21 29.0 29.3 0.51
acetaldehyde 784 813.0 0.41 26.1 28.3 0.50
benzene 876 880.9 0.53 33.9 32.6 0.52
acetonitrile 786 747.3 0.40 33.4 31.8 0.52
MUE 2.4% 5.0%

aPercent mean unsigned errors (MUE) are computed as ∑ | − |100 i
N C E

C
i i

i

data where Ndata is the number of data (compounds), and Ci and Ei are the

computed and experimental quantities, respectively, for compound i. Uncertainties were obtained by the blocking method (see Methods).

Table 2. Values of Rmin/2 and ε for Training Set Molecules
Generated from the Final Optimized Values of the
Elemental Mapping Parameters

molecule atom Rmin/2 (Å) ε (kcal/mol)

methanol
c 1.936 0.079
h-c 1.448 0.025
o 1.486 0.149
h-o 0.776 0.028

ethanol
c1 1.916 0.081
c2 2.012 0.074
h-c1 1.439 0.025
h-c2 1.423 0.025
o 1.488 0.148
h-o 0.779 0.028

aminoethanol
c-n 1.946 0.079
c-o 1.939 0.079
o 1.497 0.146
n 1.958 0.304
h-n 0.782 0.027
h-o 0.755 0.029
h-c-n 1.412 0.026
h-c-o 1.447 0.025

ethylamine
c1 2.010 0.074
c2 1.928 0.080
h-c1 1.426 0.025
h-c2 1.435 0.025
n 1.957 0.304
h-n 0.802 0.026

acetaldehyde
c1 1.999 0.075
c2 1.843 0.088
h-c1 1.419 0.026
h-c2 1.423 0.025
o 1.478 0.150

benzene
c 1.972 0.076
h-c 1.368 0.028

acetonitrile
c-c 1.986 0.075
c-n 1.845 0.088
h-c-n 1.374 0.027
n 1.891 0.326
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errors should be attributed to problems with the LJ
parameters; problems with other parameters, such as partial
charges; from limitation in the training set; or, perhaps, from
limitations of the common functional form itself.
We further probed the reliability of the SDLJ-based FF by

computing radial distribution functions (RDFs) and compar-
ing them with available experimental72−74 data. As shown in
Figure 7, SDLJ tends to overestimate the sharpness of the first
shell hydration peaks for H-bonding atoms in methanol and
ethanol, while GAFF tends to underestimate these first-shell
peaks. However, SDLJ does a better job of capturing longer
ranged structure in these liquids, such as the subtle valley in
the tail of the ethanol O−O interaction. It is perhaps worth
noting here that, unlike GAFF, SDLJ assigns polar hydrogens a
nonzero radius. For methylamine and benzene (Figure 8),
SDLJ does a somewhat better job than GAFF of capturing the
overall shape and details of these less peaked RDFs. Overall,
SDLJ does a reasonable job of capturing the fine structure of
these liquids, even though the method was not trained on these
data.

4. DISCUSSION

This study has demonstrated the feasibility of constructing a
physics-based, QM-to-FF mapping, which generates LJ
parameters that yield pure liquid properties whose accuracy
is similar to that of the well-accepted GAFF force field, despite
having many fewer adjustable parameters. The transferability of
the mapping is supported by the fact that good results were
obtained for test-set compounds having functional groups not
represented in the training set. This work is founded on
important prior advances in AIM analysis,57 dispersion
interactions,43 and automated parameter optimization.34

A key feature of our approach is the abandonment of atom-
typing in the assignment of LJ parameters. Instead, under the
present schema, each atom of a molecule is assigned unique LJ
parameters based on the QM calculation. This is advantageous,
as it largely sidesteps the challenge of categorizing atoms
according to their chemical environment. Indeed, although the
atom type categorizations used in today’s FFs are useful and
are well-motivated by chemical logic, it is not clear that they
represent an optimal balance between parsimony and accuracy,

Figure 6. Scatter plots of experimental values of density and heat of vaporization versus SDLJ or GAFF simulated results. (A) Experimental and
SDLJ densities. (B) Experimental and GAFF densities. (C) Experimental and SDLJ heats of vaporization. (D) Experimental and GAFF heats of
vaporization. Linear regression results are provided on each panel.
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and the requirement for atom-typing has been cited as a
problematic aspect of FF parametrization.42,76 Recently, this
problem has been addressed with a demonstration that the

typing itself, rather than just the parameters associated with a
fixed set of types, can be sampled effectively.36 Here, we have
considered a second approach, one which does away entirely

Table 3. Test-Set Results for the SDLJ Method and GAFFa

density (mg/ml) ΔHVAP (kJ/mol)

compound exp. SDLJ ± GAFF ± exp. SDLJ ± GAFF ±

propyl acetate 888 903.8 0.29 892.3 0.44 38 37.1 0.59 41.1 0.62
acetone 784 805.5 0.34 769.0 0.28 31.3 29.5 0.44 29.0 0.45
THF 889 859.9 0.42 884.5 0.32 32.2 27.1 0.51 30.9 0.56
DMF 944 987.5 0.27 965.7 0.54 46.8 53.6 0.51 46.4 0.57
propionitrile 792 818.6 0.48 767.4 0.29 36.3 26.1 0.41 34.0 0.42
methylamine 700 677.3 0.29 658.9 0.51 23.8 26.8 0.38 24.2 0.31
butylamine 740 745.6 0.24 753.6 0.45 34 37.3 0.62 33.9 0.59
butanol 810 735.7 0.49 794.8 0.29 52 48.0 0.71 45.0 0.68
isopropyl alcohol 786 808.2 0.29 790.0 0.35 45 46.5 0.43 42.2 0.59
glycol 1110 1143.8 0.47 1125.2 0.39 65.6 55.7 0.55 59.7 0.43
phenyl-2-propanone 1001 1015.6 0.41 981.7 0.25 55.5 60.6 0.68 54.6 0.73
furan 936 971.0 0.42 946.4 0.41 27.7 26.4 0.46 24.9 0.36
formamide 1130 1214.5 0.39 1260.9 0.96 60.2 62.9 0.37 55.7 0.37
propenal 839 884.9 0.43 828.6 0.34 32.3 31.4 0.34 31.1 0.41
dioxolane 1065 1057.3 0.40 1123.6 0.41 35.5 33.3 0.50 40.0 0.44
propenoic acid 1050 1063.0 0.44 1055.5 0.32 53.1 56.2 0.59 52.9 0.55
toluene 867 865.5 0.32 843.3 0.34 37 35.1 0.52 31.1 0.54
1,3-propanediol 1060 1086.3 1.72 1056.4 0.54 70 60.1 0.59 64.8 1.09
3-pentanone 809 807.6 0.38 772.7 0.31 38.7 34.9 0.66 34.5 0.54
o-xylene 880 864.8 0.28 848.1 0.61 42 38.9 0.64 35.8 2.85
pyridine 982 1009.8 0.49 974.8 0.40 40.5 50.5 0.51 39.2 0.42
pentylamine 755 746 0.39 745.9 0.36 39.7 47.5 0.62 41.8 0.56
3-pentanol 815 863.2 0.38 793.0 0.29 54 47.0 0.70 45.9 0.63
%MUE 3.0% 2.5% 11% 7.8%
MSE 13.8 −0.1 −0.8 −2.2

aSee Table 1 for definitions. Uncertainties were obtained by the blocking method (see Methods).

Figure 7. Radial distribution functions of various pair interactions in neat methanol and ethanol.
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with LJ types. Further work is needed to ascertain which, if
either, of these broad approaches will be most effective. An
advantage of atom-typing is that it allows ad hoc adjustments
that may at times be helpful. On the other hand, the present
approach is advantageous in that it can facilitate comprehen-
sive parameter optimization or Bayesian sampling by reducing
the number of adjustable parameters and removes the need to
sample over the typing itself. It is perhaps encouraging that one
of the leading methods of assigning atomic partial charges,
namely RESP, similarly eschews typing and instead uses a
purely physics-based QM-to-FF mapping.
The adjustment of the mapping parameters presumably

allows them to capture or compensate for several issues in the
primary QM calculation and the physical model used for the
mapping. First, although the AIM concept is intuitively
pleasing, it is at best a physical approximation, so it is
probably inevitable that some adjustment is needed. Second,
even if an AIM analysis could provide flawless LJ parameters,
adjustment would be needed to compensate for deficiencies in
other FF terms, such as charge−charge interactions, for
complexities that arise on going from gas to condensed
phase, such as many-body effects, and for the neglect of nuclear
quantum mechanics in typical classical simulations. By the
same token, although gas-phase QM interaction data may be
used to guide the adjustment of FF parameters, these
interactions will inevitably change in subtle ways upon going
into the condensed phase. We therefore chose to omit any gas-
phase QM data in the actual training of the mapping
parameters, opting instead to use only condensed phase
experimental observables.
Important recent studies have also used a tuned QM-to-FF

mapping to assign LJ parameters without atom-typing.44,45 The
present approach is different in two key respects. The first

difference is that we have modified only the LJ term and
applied the GAFF and AM1/BCC partial charges without
change, rather than simultaneously refitting bonded terms and
adding off-atom partial charges. This approach makes it
possible to isolate the effect of this one change on the accuracy
of the FF and also maintains the common functional form and
thus compatibility with widely used simulation packages. It is
worth noting that all such methods are expected to generate
parameters that depend to some degree on the conformation
of the molecule used in the QM calculations. In the present
case, at least, initial testing shows only an encouragingly small
dependence on conformation. It should nonetheless be noted
that, if cases are encountered with the dependence on
conformation is nontrivial, it should be possible to address
these by averaging over thermodynamically accessible con-
formations and/or using molecular fragmentation approaches
so that parameters can be assigned to relatively rigid molecular
components.
The second difference is in the QM-to-FF mapping itself. In

particular, prior studies have used the Tkatchenko-Scheffler
(TS) approach,43 in which the AIM volume of each atom
yields its AIM polarizability,77 which is used in turn to
determine the coefficient of the dispersion interaction (Bi in
our notation). Although the London dispersion interaction is
determined by not only the polarizability but also the
ionization energy,61 the TS approach assumes, in effect, that
any effect of variations in the effective ionization energy across
atoms on dispersion interactions is ultimately canceled by
other factors. As noted here (Section 2.4.2), this assumption
causes all atoms of a given element (e.g., all carbons) to be
assigned the identical value of epsilon and thus the same depth
of the LJ energy well. Although this approach has led to
methods of deriving nonbonded parameters which can provide

Figure 8. Radial distribution functions of various pair interactions in neat methylamine and benzene.
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good agreement with experiment,41,42,57 it runs counter to the
empirical knowledge of typed force fields which allow both
sigma and epsilon to vary for a given element. The present
approach thus uses additional physical reasoning to extract not
only the atomic volume but also an effective AIM ionization
energy for each atom and thus allows for variation in both
sigma and epsilon across atoms of a given element.
As discussed above, the great potential benefit of the general

approach taken here is the reduction in the dimensionality of
the space of LJ parameters that need to be optimized or
sampled. This is particularly important when evaluation of the
objective function requires running simulations, as this causes
each iteration to be computationally costly and thus increases
the risk of missing key sectors of LJ parameter space. Thus, we
envision applying the SDLJ approach within a broad FF
optimization scheme, where the decreased dimensionality will
make it easier to carry out a more thorough parameter
optimization. We also anticipate using QM-to-FF mappings to
generate other parameter types, such as torsional potentials.
Additionally, we are working on a version of RESP charges
which includes one adjustable parameter that scales the overall
polarity of a molecule.81 Together, these efforts could be
combined in a coordinated optimization of an entire force field
with only a small set of parameters that need to be optimized
against experimental observables. The relatively thorough
sampling of parameter space this enables should not only
lead to better parameters but also help to assess with greater
confidence whether a proposed improvement in the functional
form truly enables more accurate simulations than the starting
functional form. Thus, the present approach is supportive of a
systematic approach to advancing both the parametrization
and the form of future force fields.
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