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ABSTRACT: We present a united-atom model (gb-fb15) for the
molecular dynamics simulation of hydrated liquid-crystalline dipalmi-
toylphosphatidylcholine (DPPC) phospholipid bilayers. This model
was constructed through the parameter-space minimization of a
regularized least-squares objective function via the ForceBalance
method. The objective function was computed using a training set of
experimental bilayer area per lipid and deuterium order parameter.
This model was validated by comparison to experimental volume per
lipid, X-ray scattering form factor, thermal area expansivity, area
compressibility modulus, and lipid lateral diffusion coefficient. These comparisons demonstrate that gb-fb15 is robust to
temperature variation and an improvement over the original model for both the training and validation properties.

■ INTRODUCTION

Because of varying local concentrations of proteins, saturated
fatty acids, unsaturated fatty acids, and sterols, biological
membranes exhibit complex, composition-dependent phase
behavior.1−4 Even in heterogeneous model systems, the
coexistence of multiple gel and liquid phases, as well as the
segregation of different membrane components into domains,
has been observed.5−8 Bilayer phases can be characterized by
the lipid acyl chain rotational disorder, SCD, and lateral diffusion
rate, Dl. Under physiological conditions, phosphocholine type
lipid bilayers typically exist in a disorder liquid-crystalline phase,
referred to as the Ld or Lα phase, in which SCD is low (high lipid
tail disorder) and Dl is fast (on the order of 1 μm2 s−1).9−14

As the boundary of the cell and cellular organelles,
membranes are involved in many intra- and intercellular
sensory, signaling, transport, and regulatory processes.15−19 A
growing body of evidence suggests that lipids play a direct,
functional role in many of these phenomena. Two areas of
research related to membrane functional regulation are the
theories of mechanosensitivity, and lipid-rafts. Mechanosensi-
tivity describes a protein’s ability to respond to the mechanical
forces imposed by its local and global lipid environment.20,21

The lipid-raft hypothesis posits that, in true biological
membranes, cholesterol and sphingomyelin lipids associate to
form rigid raft-like structures. These rafts are potentially
involved in trafficking where they may surround and transport
membrane components to different regions of the membrane,
and also in signal transduction, where they may, for example,
isolate receptors from enzymes involved in nontargeted
signaling pathways.22−24 Although of scientific interest, the
time scales over which these processes occur are on the order of
nano- to milliseconds. These time scales tend to be faster than

what is currently accessible by experiment. It is thought that the
method of Molecular Dynamics (MD) simulations can be
useful for studying the specifics of biological processes, due to
its atomistic spatial and temporal resolution.25−27

The validity of an MD simulation is predicated on the
accuracy of its underlying model. Here the term “model” refers
to the system’s atomistic description, as well as the functional
form and parameters of its potential energy function, or force
field.28 The accuracy of the model is evaluated by comparing
structural, thermodynamic, and kinetic properties of the
simulated system to reference data, which come from
experimental measurements or other theoretical models. This
evaluation is valuable because it could be used to optimize the
model or validate its ability to make predictions outside of the
training data.
Atomistic descriptions of phospholipids fall into three

primary categories: “all-atom” (AA), “united-atom” (UA), and
“coarse grained” (CG). AA models represent every atom
explicitly. Current, widely used versions of these models include
Slipids,29 Lipid14,30 CHARMM36,31 and GAFFlipids.32 UA
and CG models are structurally approximate, grouping atoms
together for computational efficiency. UA models remove all
nonpolar hydrogen atoms. Within this type of model are the
Berger lipids,33 GROMOS family (43A1-S3,34 53a6L,

35 and
53a6 Kukol36), C36-UA,37 as well as the model presented here
(gb-fb15). CG models map the atoms of a particular structural
motif into a smaller number of beads. Of this model variety,
MARTINI38 and the SDK models39 are among the most widely
used. The AA and UA models mentioned here have
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quantitatively comparable accuracy, having very low error with
respect to the ability to reproduce a standard set of bilayer
thermodynamic and kinetic properties. The CG models are
qualitatively accurate but tend to have higher quantitative
error.40 Structural coarse-grained approximations decrease the
number interactions of a system, and have a smoothing effect
on the system’s free energy landscape. This allows for faster
phase space sampling, but also can result in an underestimation
of system entropy.41,42 As is generally the case, the optimal
model is going to be application and resource dependent. For
detailed comparisons of most AA, UA, and CG lipid force fields
in use today, see refs 43−47.
MD is a classical theory. The force field is determined

through the fitting of empirical data and/or results of quantum
mechanical (QM) calculations. It is hoped that by fitting this
potential function to experiment, equilibrium ensemble proper-
ties and mean-field quantum effects will be accurately described.
Many of the original force fields were developed via manual
parameter search techniques. Since then, several tools for
automatic parameter optimization have been developed. Some
major packages used for this purpose include GAFF48,49 and
CGenFF50−53 for small molecules, and ParamFit,54 Wolf2
Pack,55 GROW,56 and our methodology, ForceBalance,57,58 for
general force field optimization.
In this study, we report the systematic training and validation

of an united-atom phospholipid bilayer force field using
experimental thermodynamic data. A pure bilayer consisting
of dipalmitoylphosphatidylcholine (DPPC) lipids, hydrated by
simple point charge (SPC) water59 molecules, was chosen for
our first model because it has been studied in the greatest detail
in both theory and experiment. This allows for the most
thorough optimization, characterization, and quality evaluation.
A united-atom description was chosen for computational
efficiency. It was found that our united-atom approximation is
capable of capturing the relevant physical and chemical
properties of the lipid bilayer, while improving sampling
efficiency when compared to AA models. This new model will
be referred to as gb-fb15.

■ METHODS

The Model. The model presented here follows a standard
functional form, given by a classical piece-wise summation over
bonded and nonbonded interaction potentials.

Λ = Λ + ΛV r V r V r( ; ) ( ; ) ( ; )N N N
bonded nonbonded (1)

Note that the potential terms are given as a function of system
configuration, rN, and force field parameter values, λ,
represented by the set Λ.
The bonded terms describe the interaction between

covalently bonded atoms, and they consist of bond and
bond-angle terms, as well as improper and proper torsional
dihedral angle terms. The acyl chain torsional dihedral terms
are uniquely treated using a Ryckaert−Bellemans potential.
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The in variables (where i = b, θ, ξ, ϕ) describe the time-
dependent simulation values. The nonbonded terms consist of
a Lennard-Jones potential and a Coulombic electrostatic
potential.

Λ = +V r V r C C V r q( ; ) ( ; , ) ( ; )N N N
nonbonded LJ 6 12 Coulomb

(4)
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For this study, the initial parameter set consisted of the
GROMOS 53a6 (G53a6) force field, modified to include
Berger lipid Lennard-Jones (LJ) and tail dihedral parameters.
Here we will refer to this model combination as “g53a6-b”.
GROMOS 53a6 was originally parametrized for the repro-
duction of small biomolecule densities, enthalpies of vapor-
ization, and hydration free enthalpies.60 This force field has
been shown to accurately model several experimental structural
properties for peptides, proteins, and DNA in explicit SPC
water,61 but it fails to describe the correct phase behavior for
hydrated phosphatidylcholine bilayers.36 The qualitatively
correct phase behavior is recovered when GROMOS 53a6 is
combined with the aforementioned elements from the Berger
lipid parameter set.
Developed in 1997, Berger lipids remain among the most

popular lipid bilayer force fields. It borrows its Lennard-Jones
(LJ) parameters from the united-atom OPLS force field,62

modifying the values for the hydrocarbon tail group atoms.
These OPLS tail group LJ sigma and epsilon values were found
by fitting to experimental density and enthalpy of vaporization
measurements.33 The tail group dihedral potential was taken
from Ryckaert and Bellemans, who fit their potential using
spectroscopic data of an n-butane monomer.63

For our parametrization process, we optimized the Lennard-
Jones parameters for all lipid atom types (as illustrated in
Figure 1). These parameters are described by the C12 and C6
terms in eq 5. The bonded and electrostatic parameters were
left unmodified.

Simulation Conditions. We combined the force field
parameters described above following Justin Lemkul’s GRO-
MACS membrane-protein tutorial.64 The force field topology,
along with an equilibrated DPPC bilayer, were obtained from
Peter Tieleman’s Web site.65 The simulated system consists of
128 DPPC united-atom lipid molecules, arranged in two
leaflets, hydrated by 3655 water molecules.
Model optimization is an iterative process wherein, at each

step, simulations are run using an updated parameter set. These
simulations were first energy minimized via a steepest descent
algorithm over 10000 steps, and then equilibrated using a
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Berendsen barostat for 200 ps with a time step of 2 fs. An NPT
ensemble was enforced during the production dynamics via a
Nose−Hoover thermostat (τt = 0.5 ps, reft = 323, 333, 338, and
353 K) and a semiisotropically coupled Parrinello−Rahman
barostat (τp = 2.0 ps, refp = 1.0, κt = 4.5e−5 bar−1).
Electrostatics were calculated using a particle-mesh Ewald
scheme of order 4 and Fourier spacing of 0.16 nm. The Ewald
real space and van der Waals cutoffs were both set to 0.12 nm.
The LINCS algorithm was used to fourth order to constrain all
bonds to their equilibrium lengths. Note that lipid force fields
are highly sensitive to simulation parameters, and should be
used with the specifications applied during model development.
A GROMACS parameter file has been supplied with the force
field developed in this work, available in the GitHub repository
described in the Notes. For each temperature point, ten parallel
simulations with unique initial conditions were run for 3 ns
each in a rectangular box with periodic boundary conditions
using a leapfrog integrator. All simulations were performed
using the GROMACS 4.6.5 software package.66−69 Training
properties were then calculated for each production simulation,
and property averages were calculated using all trajectories
belonging to a particular NPT macrostate (40 simulations per
iteration, 10 per temperature, resulting in a 30 ns time series for
each thermodynamic property at each temperature point). Pre-
equilibrating the production simulations and parallelizing over a
range of unique initial conditions was found to drastically
accelerate the convergence of the training properties. The final
frame from each production simulation was used as the initial
condition for the following iteration of the optimization
process. The distribution of jobs was facilitated through use
of the Work Queue library.70

Optimization. The ForceBalance method addresses the
challenge of finding an optimal approximate potential function
via a supervised learning method. A set of training data is used
to compute an objective function which is then iteratively
minimized in the space of force field parameters. The
ForceBalance objective function is of a least-squares form and
is given by the following expression:

∑ ∑χ α β α βλΛ = − Λ +
| | |Λ|

t a( , , ) ( ( ))
i

T

i i i
i

i i
2 2 2

(6)

This objective function is a quantification of model quality,
determined by the force field parameter set, λi ∈ Λ, through
comparison of simulation properties, ai ∈ O, to a training set, ti
∈ T, consisting of empirical and/or ab initio data. Residuals are
of a least-squares form and are guaranteed to be relatively small
because parameters of a suitable, existing model are used as an
initial guess. This ensures that the system’s thermodynamic
properties are stable and reasonably close to the experimental
values. To ensure that each training property contributed as
evenly as possible to the optimization process, the units of the
training data were set so that all data was of the same order of
magnitude, and the α weights were both set to 0.5.
This method implements an L2 regularization scheme in

order to discourage overfitting, given by the second summation
in eq 6. The regularization term guarantees that the parameters
only deviate from their initial values by an amount that is small
compared to the initial parameter values. It is given by

∑ λ λ
=

−

λ

|Λ|

P
( )

i

0
2

(7)

where λ0 is the initial value of the parameter and Pλ is a
hyperparameter representing the allowable deviations of the
parameter. To ensure the objective function remains
dimensionless, Pλ has the same physical units as λ. We chose
the values of the hyperparameter Pλ by inspection of the initial
parameter values. Because the initial values of the Lennard-
Jones σ and ϵ values were all between 0.2 and 1.0 (in the
GROMACS unit system), we chose Pσ = 1.0 nm and Pϵ = 1.0
kJ/mol. In practice, the RMS percentage change of the
parameters from their initial values was 10.9%, and the largest
change for any parameter was for the LC2 σ parameter, which
increased by 28.5%.
The objective function is minimized using the Levenberg−

Marquardt algorithm71,72 with an adaptive trust radius,73,74

where parameter shifts are given as follows:

λ λ χ α β
χ α β

= + ∇ Λ
∇ Λ ++ bI

( , , )
( , , )i i1

2

2 2
(8)

The objective function parameter-space gradients are calculated
analytically, and the elements of the Hessian are approximated
using the Gauss−Newton approximation. I is the identity
matrix, and the b term is found by tracking the relative error
between optimization iterations, and is used to interpolate
between gradient descent (large b, far from a minimum) and
the Gauss−Newton method (small b, close to a minimum,
where a quadratic approximation is more appropriate).
For high-dimensional small-residual nonlinear least-squares

optimization problems, gradient-based Newton-type methods,
such as Levenberg−Marquardt, have been shown to exhibit
rapid local convergence.75 When the training properties are not
explicitly dependent on the system’s potential energy, their
parameter-space gradients can be represented analytically.58

This can be seen if one considers the ensemble average of an
observable, A, which is not explicitly dependent on the system’s
potential energy, as seen in eq 9. Through differentiation, this
derivative expression reduces to the analytic fluctuation formula
shown by eq 10.

Figure 1. Schematic of a united-atom (UA) DPPC lipid, with labeled
atom types. This conformation was sampled from a simulation
trajectory.
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where Q(λ) is the partition function for the isothermal−
isobaric ensemble, r is the system’s spatial configuration, V is
the volume, β ≡

k T
1

B
, where kB is Boltzmann’s constant, T is the

temperature, and E(r,V; λ) is the potential energy. Analytic
computation of these gradients is advantageous because
numerical finite-difference approximations are resource in-
tensive and subject to numerical error. Analytic gradients are
still subject to sampling error, but as described above, pre-
equilibration of the production simulations and analysis across a
diverse range of initial conditions allowed for fast convergence
of the training properties, resulting in sampling error of less
than 5%.
For this optimization procedure, area per lipid and deuterium

order parameter were contained in the training set and, hence,
used to train the model. For a homogeneous lipid bilayer, area
per lipid can be calculated from a simulation using the following
equation:

⟨ ⟩ =
⟨ · ⟩

A t
d t d t

n
( ) 2

( ) ( )x y

L
L

(11)

where di(t) is the time series for the i component of the box
volume, and nL is the number of lipids in the simulation. The
box dimension time series were obtained using the GROMACS
routine g_energy. The deuterium order parameter, for each tail
CH2 carbon node (atomtype LP2), SCDi

(i ∈ 1, ..., 14), is
calculated as follows:

θ= ⟨ − ⟩S t
1
2

3 cos ( ( )) 1CD i
2

i (12)

where θi(t) is the time series for the angle determined by the
Ci−D bond vector and the bilayer normal vector. This angle
was computed by assuming a tetrahedral geometry for each
united-atom tail carbon.
For each iteration, a set of simulations were run for each

unique temperature point. From these simulations, the
objective function was computed using the training set
properties, and parameters were modified as described in eq
8. The next iteration was then initialized using the updated
parameter set. This process was repeated until the objective
function was minimized.
Validation. Model validation involves the evaluation of

properties contained in a “test set” from trajectories generated
using the new parameter set. The test set consists of properties

not used during the training process. Extensibility of model
accuracy beyond the properties used for model training is the
true test of model quality.
Following completion of the optimization process, for each

temperature point, continuous 600 ns long validation
simulations were run using the final parameter set. These
trajectories were first equilibrated for 20 ns, and had simulation
conditions identical to those specified for the optimization
simulations (with the exception of simulation length and
parameter set). Property uncertainties were calculated using the
autocorrelational statistical inefficiency of the property time
series.76

In this study, our validation set consisted of experimental
bilayer isothermal area compressibility modulus, κA, lateral lipid
diffusion, Dl, volume per lipid, VL, and X-ray structure factor, |
F(q)|. κA is related to the fluctuations in AL via the following
expression:

κ
σ

=
⟨ ⟩k T

n
A

2A
L A

B L
L

L (13)

Wwhere kB, T, nL, and σAL
represent Boltzmann’s constant,

temperature, number of lipids in the simulation, and the
variance in ⟨AL⟩, respectively.
Lateral lipid diffusion was calculated by first pulling 50

snapshots from the NPT validation trajectories, spaced 20 ns
apart. These frames were then used as the initial conditions for
100 ps long double precision NVE simulations. The 2D
Einstein relation was then used to find the lateral diffusion
constant from the slope of the linear regime of the mean square
displacement time series77 of the headgroup phosphate atom, as
in eq 14, where the lateral displacement is along the bilayer−
water (xy) interface, and the phosphate xy coordinates at time t
are represented by r(t). The reported lateral diffusion values are
averages over the 50 NVE trajectory results.
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Volume per lipid was calculated according to

=
⟨ ⟩ −

V
V n V

n
box w w

L
L

(15)

where ⟨Vbox⟩, nw, and Vw are the average simulation box volume,
the number of water molecules, and the temperature-depend-
ent volume of one water molecule, respectively. Vw was found
from separate simulations of pure SPC water with simulations
run with specifications identical to those applied to the
validation simulations.
The electron density profiles were found using the

GROMACS routine g_density. The bulk water electron
densities were then subtracted from these EDPs. The Fourier
transform of these curves yields the X-ray structure factors.

∫ ρ ρ| | = | − |
−

F q z z z( ) e ( ( ) ( )) d
z

z
iqz

/2

/2

bulk (16)

where ρ(z) is the electron density profile, and ρbulk represents
the electron density of bulk water.

■ RESULTS AND DISCUSSION
Training Set Results. For this study, the training set

consisted of two experimentally measured properties: average
area per lipid, ⟨AL⟩, and phospholipid acyl chain deuterium
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order parameter, |SCD|. These properties belong to the “training
set”, because they were used for model fitting. These particular
characteristics were chosen for model training because they are
structurally descriptive in distinct ways, and experimental data
for each are available across a wide temperature range.
Simulations run using the optimized parameters were found
to closely reproduce training set experimental properties. As
illustrated by Figures 2 and 3, our model shows an
improvement from the original parameter set, across all
temperatures.

Average area per lipid describes the expected surface area of
each lipid molecule, projected onto the membrane xy plane. Of
all bilayer properties, this has been studied the most extensively
by experiment.14,78−80 Consequently, it is also used to fit the
majority of phospholipid force fields. However, due to thermal
motion of the bilayer, it is difficult to measure this quantity with
high precision in real systems.79 For this reason, the reported
experimental values have relatively high uncertainty.
The original model, g53a6-b, results in a bilayer that is too

laterally dense, as demonstrated by low AL values. For the
optimized parameter set, the AL values are closer to experiment.
For the most thoroughly characterized temperature value, T =
323.15 K, the new model falls within the error of the
experimental value. Improvement of this property is important
for the accurate structural description of the bilayer.
The deuterium order parameter quantifies the expected

rotational disorder of each lipid tail methylene group with

respect to the normal of the membrane xy plane.81 As carbon
“nodes” (acyl groups) are closer to the bilayer center, they
become characteristically disordered, and |SCD| tends to zero.
Reproducibility of acyl chain deuterium order parameters from
simulation is highly valued because its experimental values are
independent from analysis modeling, as they are calculated
directly from 2H NMR quadrupole splitting and have low
uncertainty.
Across all temperatures, the original model displays overly

ordered tail rotational dynamics, as evidenced by higher |SCD|
values. The acyl groups nearest to the headgroup were found to
have the highest error, with the error residual decreasing for the
acyl groups near the bilayer center. For all temperatures, the
updated model yields lower error when compared to
experiment. It can be seen that the errors for the new model
remain the greatest for the acyl groups nearer to the headgroup,
but the magnitude is reduced.

Validation Set Results. The validation set results are also
an overall improvement to the original model. These properties
were not used to fit the model, and therefore lend unbiased
support to model quality.
As can be seen in Figure 4, the X-ray structure factor for

g53a6-b has better agreement with experiment when T =
323.15 K, while the new model has better agreement to
experiment for T = 333.15 K. At lower temperature, the new
models have q-axis zeros shifted to slightly higher q values. This
means that, on average, the new model produces a bilayer
thinner than that of the original model. Typically, as AL
increases, bilayer xy density decreases, and the membrane will
compress in the z direction. Considering the degree of increase
for AL, the structure factor is very modestly affected. At the
higher temperature, the new model has very good agreement
with experiment, showing improvement over the original
model.
For the remaining validation properties, experimental data

was only available for T = 323.15 K. These results are given in
Table 1. Although the area per lipid is within experimental error
for T = 323.15 K, volume per lipid shows an improvement, but
it is not as drastic. This highlights how the bilayer is likely too
narrow in the z direction at this temperature, and it stands as a
direction for future improvement. Isothermal area compressi-
bility has decreased for the new model and now lies closer to
experiment. This shows that not only is the average AL more
accurate, but the fluctuation behavior of this behavior has also
improved. Lastly, the lateral diffusion constant has also
improved. For the available experimental data point, the result

Figure 2. DPPC area per lipid as a function of temperature compared
to experiment78−80 for the original and optimized models.

Figure 3. DPPC deuterium order parameter as a function of temperature compared to experiment79 for the original and optimized models.
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is very close. This is an important result because no kinetic
information was used to fit the new model. Optimization using
a set of thermodynamic properties has also led to an
improvement in this critical kinetic property.
Parameter Behavior. At the heart of the ForceBalance

method is the parameter-space minimization of the objective
function. The objective function, χ2, is considered minimized
once Δχ2 begins to oscillate within a use-specified window
(0.01 in this work, achieved after 10 iterations, see SI Figure
S1). Because the objective function is computed by summing
over the square of training set property error residuals, the
parameter space derivatives of these terms can provide insight
into the progression of the optimization procedure.

For this model, the water−lipid interaction has been
optimized, while the lipid−lipid and water−water interactions
remain constant. The was accomplished through the
modification of the DPPC σ and ϵ components of the
water−lipid Lennard-Jones interaction. SI Table S1 tabulates
the original and final parameter values, as well as the percent
difference, for each atom type (as illustrated in Figure 1). In
Figure 5, the derivatives of the training property errors with

respect to the modifiable parameters are illustrated for both the
final and initial models. It can be seen that the original model
shows significantly higher derivative values. For the new model,
the derivatives are, in all cases, nearly zero. This signifies that
the parameters of gb-fb15 exist in a local minimum. This is
corroborated by the improved performance of the new model
in both the training and validation sets.
It can be seen that the initial derivatives for each training

property residual share many similarities. For several of the
parameters, when the derivative is high for one training
property, it is also high for the other training property. This is
potentially a reflection of coupling between the training
properties. It is expected that an increase in AL would result
in an increase in SCD. If the lipids molecules are less compact,
the lipid tails will have more space in which to rotate. There are
some notable exceptions to this trend. The primary differences
involve the phosphate moiety of the headgroup (LOS, LOM,
and LP), where it can be seen that the initial derivatives do not
follow an obvious trend. For example, the AL sigma derivative
for the sigma LOS parameter is much higher than the
corresponding derivative for SCD. The reverse is true for the
epsilon LOM parameter. This moiety is near the bottom of the
headgroup, and therefore likely important for intramolecular
headgroup−tailgroup interaction, and also intermolecular
headgroup−headgroup interactions. For this reason, we
speculate that the coupling between the training properties is
least strong for these atom types, and that is why this disparity
is seen.

Figure 4. DPPC X-ray structure factor at the temperatures for which
there exists experimental data.78,82

Table 1. Comparison of Validation Set Results to
Experiment

Property T (K) g53a6-b gb-fb15 exp

VL (Å
3) 323.15 1171.7 (1) 1191.7 (3) 123214

333.15 1179.6 (1) 1199.0 (3)
338.15 1183.7 (1) 1203.4 (2)
353.15 1194.5 (1) 1214.3 (1)

κAL
(mN m−1) 323.15 290 (9) 190 (14) 23114

333.15 294 (13) 172 (3)
338.15 299 (3) 170 (3)
353.15 315 (2) 218 (8)

Dl (10
−8 cm2 s−1) 323.15 8.8 (5) 12.8 (5) 12.583

333.15 10.6 (8) 14.4 (5)
338.15 11.9 (7) 15.1 (5)
353.15 16.5 (8) 19.8 (8)

Figure 5.Magnitude of the initial (dashed) and final (solid) parameter
derivatives for each objective function training set residual. The
derivatives have been normalized by the L2 norm of the starting model
derivative values.
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■ CONCLUSION
A united-atom model for the NPT molecular dynamics
simulation of SPC-hydrated DPPC bilayers, named gb-fb15,
has been presented. We recommend the use of this model in
simulations of both homo- and heterogeneous DPPC bilayer
systems. This model was constructed using the ForceBalance
method, which uses the Levenberg−Marquardt algorithm to
minimize a regularized nonlinear least-squares objective
function. Our application of this method to the DPPC
Lennard-Jones parameters has yielded a model demonstrating
clear improvements over the original parameter set across a
range of thermodynamic and kinetic properties contained in an
extensive training and validation set. Additionally, results show
that this new model displays an improved response to
temperature variation. The quality of our resultant model
demonstrates the effectiveness of this optimization technique
for the improvement of phospholipid bilayer force fields.
Future directions aim to improve model utility and accuracy,

while reducing computational cost. In particular, we aim to
apply this optimization procedure to a wider variety of lipid
types. We also hope to ensure maximum compatibility of these
models with the recent release of more accurate water and
protein models. Updated parameter sets for a variety of united-
atom lipid representations will be particularly useful for those
interested in the simulation of large membrane proteins, for
whom structural approximation is especially valuable.
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(82) Kucěrka, N.; Katsaras, J.; Nagle, J. F. J. Membr. Biol. 2010, 235,
43−50.
(83) Vaz, W. L.; Clegg, R. M.; Hallmann, D. Biochemistry 1985, 24,
781−786.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00801
J. Chem. Theory Comput. 2016, 12, 5960−5967

5967

http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/membrane_protein/
http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin/gmx-tutorials/membrane_protein/
http://wcm.ucalgary.ca/tieleman/downloads
http://www3.nd.edu/ccl/software/workqueue/
http://dx.doi.org/10.1021/acs.jctc.6b00801

