
Automated Code Engine for Graphical Processing Units: Application
to the Effective Core Potential Integrals and Gradients
Chenchen Song,†,‡ Lee-Ping Wang,†,‡,§ and Todd J. Martínez*,†,‡

†Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States
‡SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States

*S Supporting Information

ABSTRACT: We present an automated code engine (ACE)
that automatically generates optimized kernels for computing
integrals in electronic structure theory on a given graphical
processing unit (GPU) computing platform. The code
generator in ACE creates multiple code variants with different
memory and floating point operation trade-offs. A graph
representation is created as the foundation of the code
generation, which allows the code generator to be extended to
various types of integrals. The code optimizer in ACE
determines the optimal code variant and GPU configurations
for a given GPU computing platform by scanning over all
possible code candidates and then choosing the best-
performing code candidate for each kernel. We apply ACE to the optimization of effective core potential integrals and
gradients. It is observed that the best code candidate varies with differing angular momentum, floating point precision, and type
of GPU being used, which shows that the ACE may be a powerful tool in adapting to fast evolving GPU architectures.

1. INTRODUCTION

Many well-established approaches in modern quantum
chemistry rely on introducing a set of one-electron orbitals to
describe the many-body wave function. The ab initio
calculations of the electronic energy, atomic forces, and other
observables naturally involve integrals of the atomic basis
functions with operators such as electron−nuclear attraction
and electron−electron repulsion,1 dipole moment, and spin−
orbit coupling,2 along with their corresponding derivatives.3

Consequently, the computational cost of many quantum
chemistry methods is dominated by large numbers of integral
and gradient evaluations. More recently, graphical processing
units (GPUs) have become a powerful resource in accelerating
integral construction.4−7 However, due to significant differences
in the architecture between GPUs and traditional central
processing units (CPU), several important programming
challenges must be addressed in order to efficiently utilize the
computational power of the GPU.
In terms of evaluating integrals in electronic structure theory,

there are at least three important challenges. First, the
streaming multiprocessor (SM) in GPUs derives its computa-
tional power from executing kernels on thousands of threads in
parallel, but each thread has rapid access to only a relatively
small amount of data compared to programs running on the
CPU. GPUs have a complex memory hierarchy; in order of
increasing latency (the time needed to access a variable),
memory is composed of (1) thread-specific registers, (2) L1
cache/shared memory (shared among a group of threads called
a block), and (3) L2 cache/global memory (accessible by all

threads). In contrast with a typical CPU, where the cache size
per thread is usually several megabytes, the cache size per warp
(a group of 32 threads comprising the minimum execution
unit) on the GPUs is only several kilobytes. The properties of
small cache, high latency, limited bandwidth, and potential bank
conflicts all make global memory (DRAM) usage expensive.
Broadly speaking, performance is improved by writing GPU
code that efficiently uses the registers and shared memory while
minimizing the use of global memory such that cores stay
“busy” with computations rather than “waiting” to read a
variable from higher-latency memory.
Second, the architecture of graphical processing units evolves

quickly. NVIDIA has announced its Fermi, Kepler, and Maxwell
architectures within only 6 years since 2009. These
architectures all have different features from each other. For
example, a typical graphics card with Fermi architecture (i.e.,
compute capability (CC) 2.x)8 is composed of 16 SMs, each
with 32 cores. The Kepler architecture (CC 3.x) reduces the
number of SMs of each card, but it increases the cores per SM
to 192. The Maxwell architecture (CC 5.x) has 128 cores on
each SM that are partitioned into 4 processing blocks, each with
its own resources for scheduling and instruction buffering.
More detailed comparisons among architectures are given in
Table 1, as well as Section 1 of the Supporting Information.
Due to the diversity of GPU architectures, computing kernels

Received: August 17, 2015
Published: November 17, 2015

Article

pubs.acs.org/JCTC

© 2015 American Chemical Society 92 DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.5b00790

optimized for one platform are not guaranteed to perform well
on another.
Third, the complexity of kernels in both operations and

memory requirements increases with respect to the angular
momentum of the basis set.9,10 As a result, optimizing the
kernels becomes increasingly difficult with higher angular
momentum. This is also a challenge in carrying out integrals
and gradients on the CPU, but it is more onerous in the case of
the GPU due to the rapid introduction of new architectures and
the limited memory constraints.
The problem could be solved if there existed a fully

optimizing compiler capable of transforming each program P
into the optimum program Opt(P) with the same input/output
behavior as that of P. However, the full employment theorem in
computer science has proved that such an ideal compiler
cannot exist.11 In addition, the range of transformations that a
compiler can explore is usually limited such that the program
can be compiled in a reasonable amount of time; in a qualitative
sense, the compiler performs only a very local optimization in
the full space of programs. As a result, we cannot completely
rely on a general purpose compiler to search for better program
transformations. An alternative approach is to develop a code
generator that can use knowledge of the mathematics behind
integral methods (which is not available to a compiler) to
create a wide variety of code variants. We expect that the
resulting code variants will more broadly explore the space of
possible program implementations and thus be more likely to
expose the best performance on the hardware.
The complexity inherent in ab initio quantum chemistry and

many-body theories has long motivated attempts to use
automated code generation. The earliest attempt dates back
to the pioneering work of Jones,12,13 automating the generation
of overlap integrals between Slater-type orbitals by using a
computer algebra system to transform mathematical expres-
sions into computer code. Subsequent studies have applied this
method to generate code for Gaussian integrals,14 density
functional theory,15 and many-body theories.16,17 Very recently,
MacLeod et al. developed an automatic code generator that
enables analytical nuclear gradient implementations for fully
internally contracted active space second-order perturbation
theory (CASPT2).18 These studies focused on the use of code
generators to guarantee code correctness while avoiding
intensive (and often error-prone) manual derivations.
There has also been previous work aimed at using code

generators to improve implementation performance in addition
to ensuring code correctness. One approach to automated code

generation with performance optimization is model-driven
optimization. An example of this approach is the tensor
contraction engine (TCE),19 which has achieved great success
in CPU-based computational many-body theory. TCE includes
an operator contraction engine (OCE), which transforms
Feynman-like diagrams into tensor expressions expressed in a
domain-specific language. The TCE, which is the compiler of
the domain-specific language, then translates the high-level
symbolic math language into low-level languages like
FORTRAN and C. The model-driven search-based optimiza-
tion approach adopted by TCE relies on cost models to
estimate and minimize the computational cost.20 Very recently,
researchers have been working on generalizing the TCE
optimization approach such that tensor computation optimiza-
tion can be extended to other architectures like GPUs.21

Another example is LIBINT,22,23 which uses an optimizing
compiler to automatically generate two-body integrals over
Gaussian functions. The optimizing compiler approach enables
easy implementation of new recurrence relationships and yields
high performance for the generated code on superscalar CPU
architectures.
Empirical profile-guided optimization is another approach for

automatic generation of optimized code. Examples include the
automatically tuned linear algebra library24 (ATLAS) and the
fastest Fourier transform in the west (FFTW).25 Both
numerical libraries perform program optimization by empiri-
cally testing the performance of several versions of generated
code on the target architecture. The optimization approach is
based on the idea that the accurate prediction of code
performance requires good knowledge of the hardware layout
and parameters, which can be highly complex and vary greatly
across different types of target architectures. In addition,
different code variants will trigger different (and often
unpredictable) optimization paths in the chosen compiler,
which decreases the accuracy of model-based approaches.
ATLAS and FFTW address the problem by generating a set of
code variants that cover a wide range of possibilities and
selecting the best code variant based on timing tests. When
ATLAS was introduced, it matched or exceeded the perform-
ance of the vendor-supplied version of matrix multiplication on
almost every tested platform;26 later tests showed that its
performance reaches 80−100% of newer packages (e.g., MKL,
GotoBLAS) that feature manually optimized routines for
specific architectures.27 A similar empirical profile-guided
approach has been developed and applied to problems in
tensor algebra.28

The profile-guided optimization strategy is especially
appealing for quantum chemistry computations on GPUs
because the high complexity of both the algorithms and the
hardware architecture make it difficult to accurately model
performance. Titov et al. took first steps toward applying this
approach to optimize Fock matrix construction on the GPU
with d-orbitals,29 and were able to achieve similar performance
as hand-tuned GPU kernels limited to s and p orbitals.
However, this work was only partially automated, hampering
extensions to higher angular momentum functions or different
integral types.
In this work, we describe the development of a fully

automated code engine (ACE) that generates optimized kernels
of integral calculations for a given CUDA computing platform.
In order to highlight the fundamental issues, we have first
focused on the most complex one-electron integral (integrals
over effective core potentials or ECPs), although generalization

Table 1. Comparison among Different Generations of
Streaming Multiprocessors

Fermi Kepler Maxwell

compute capability 2.0 3.0/3.5 5.0
cores 32 192 128
register files (KB) 32 64 64
L1 cache/shared (KB) 64 64 96
warp scheduler 2 4 4
load/store units 16 32 8
special function units 4 32 8
threads per warp 32 32 32
max warps per SM 48 64 64
max blocks per SM 8 16 16
max registers per thread 63 63/255 255
max threads per block 1024 1024 1024

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

93

http://dx.doi.org/10.1021/acs.jctc.5b00790

to other integrals is also possible. In order for the code
generator to be easily generalizable, we introduce a graph
representation of the procedure for evaluating the integral,
which enables easy searching over different code variants.
The structure of this article is as follows. First, we describe

the design of the three modules in ACE, namely, the code
generator, the code tester, and the code optimizer. We then
describe in detail the graph representation, which is the
foundation of our automated code generation. Next, we apply
ACE to ECP integrals and gradients. We show that the angular
momentum, floating point precision, and the type of GPU
architecture all affect the optimal choices. We observe
significant differences in performance across different com-
piler-optimized code variants. This indicates that compiler
optimization is far from complete and that the generation and
testing of codes using ACE is a way to achieve high
performance for quantum chemistry calculation kernels on
the GPU. Finally, we discuss improvements to be carried out in
future work.

2. METHODS
The most fundamental concept in ACE is the representation of
the program that evaluates an integral as a graph that connects
input and output variables through intermediate values and
mathematical operations. Given this graph representation, ACE
automatically generates multiple computational kernels by
transforming the graph structure and designating variables as
being stored or recomputed on-the-fly. In the current article, we
provide an initial graph representation of the integral as the
starting point; future work will describe the capabilities of ACE
for automatically generating graph representations starting from
high-level working equations. In the next section, we introduce
the equations for computing the integrals that provide the basis
of the graph representation.
2.1. ECP Integrals and Gradients. Here, we briefly

summarize the method for computing ECP integrals and
gradients, following McMurchie and Davidson.30 The form of
the effective core potential operator for an ECP center31

located at the origin is

∑ ∑= + | ⟩ − ⟨ |+
= =−

+U r U r S U r U r S() () (() ())L
l

L

m l

l

lm l L lmECP 1
0

1

(1)

where L is the maximum angular momentum orbital in the
core, and the angular functions Slm(θ, φ) are the normalized
real spherical harmonics. The following two types of integrals
appear in ECP integral evaluations ⟨ϕa|UECP(r)|ϕb⟩

∫ ∫χ ϕ ϕ= Ω
∞

Ω
r U r rr r() () () d dab a b0

2
(2)

∫ ∫ ∫γ ϕ ϕ= Ω Ω′
∞

Ω Ω′
r U r S S rr r() () d () d dab

l
a lm b lm

0

2

(3)

where

ζ = ζ−U r d n d r(; , ,) eu u
n r2

(4)

is the primitive radial Gaussian functions for the ECP potential,
and

ϕ = − − − η− −d x A y A z Ar() () () () ea a x
a

y
a

z
a r A()x y z a

2

(5)

ϕ = − − − η− −d x B y B z Br() () () () eb b x
b

y
b

z
b r B()x y z b

2

(6)

are the primitive Gaussian basis functions. The contraction
coefficients for the ECP potential and basis functions are given
by du, da, db, and the exponents are given by ζ, ηa, ηb. Here, we
have employed a local coordinate system centered at the
position of the ECP center for each integral. The centers of the
basis functions are given by A = (Ax, Ay, Az) and B = (Bx, By,
Bz), and the angular momenta are ax, ay, az and bx, by, bz. The
integral in eq 3 can be evaluated as

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

γ π

α β ζ η η

= Θ

× Θ

× + + +

Ω

α α α

β β β
β β β

λ

α

λ

β

λ λ

λ λ
α α α β β β

= = =

= = =

=

+

=

+

d d d A A A

B B B

R n R R

r r

16 (, ,)

(, ,)

(2 , , , , ,)

(,)

a a a b b b
l

u a b
a

a

a

a

a

a

a a a x y z

b b b

b b b x y z

l l

a A b B

l A B

,
2

0 0 0
,

0

0 0 0
,

0

0 0
,

,
,

x y z x y z
x

x

y

y

z

z

x y z x y z

x

x

y

y

z

z

x y z x y z

x y z x y z

1 2
1 2

1 2 (7)

where La = ax + ay + az, Lb = bx + by + bz, α = αx + αy + αz, β =
βx + βy + βz, RA = ∥A∥, RB = ∥B∥, rA = A/RA, and rB = B/RB.
We have defined the angular factors as

α α α

Θ

= −

α α α

α α α α− − − −⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

A A A

a a a
A A A

(, ,)

(1)

a a a x y z

L x

x

y

y

z

z
x
a

y
a

z
a

,
0

x y z x y z

a x x y y z z

(8)

∫

∫

∑ ∑

∑

θ φ

θ φ

Ω =

Ω

× Ω′

λ λ
α α α β β β

μ λ

λ

λ μ λ μ
α α α

μ λ

λ

λ μ λ μ
β β β

=− =−

=−

S S S x y z

S S S x y z

r r(,)

(,) d

(,) d

l

m l

l

A A lm n n n

B B lm n n n

A B,
,x y z x y z

x y z

x y z

1 2

1 1

1

1 1 1 1

2 2

2

2 2 2 2
(9)

and the radial function is defined as

∫ζ η η

η η

=λ λ
ζ η

η
λ λ

∞
− − −

− −

R N R R r

K R r K R r r

(, , , , ,) e e

e (2) (2) d

a A b B
N r r R

r R
a A b B

,
0

()

()

a A

b B

1 2

2 2

2

1 2 (10)

where K is the modified spherical Bessel function of the first
kind weighted by an exponential factor as Kλ(z) = Mλ(z) e

−z.
The corresponding analytic gradient of the integral in eq 3

can be derived by making use of the property that

η

−

= − − −

η

η η

− −

− − − + − −
A

x A

a x A x A

d
d

[() e]

() e 2 () e

a x A

a x A
a

a x A

()

1 () 1 ()

a

a a

2

2 2

(11)

As a result, the analytic gradient of the integral in eq 3 with
respect to Ax can be computed as

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

94

http://dx.doi.org/10.1021/acs.jctc.5b00790

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

γ π

α β ζ η η

=

Θ

× Θ

× + + +

Ω

α α α
α α α

β β β
β β β

λ

α

λ

β

λ λ

λ λ
α α α β β β

=

+

= =

= = =

=

+

=

+

A
d d d

A A A

B B B

R n R R

r r

d
d

16

(, ,)

(, ,)

(2 , , , , ,)

(,)

x
a a a b b b
l

u a b

a a a

a a a
x

x y z

b b b

b b b x y z

l l

a A b B

l A B

,
2

0

1

0 0
,

0 0 0
,

0

0 0
,

,
,

x y z x y z

x

x

y

y

z

z

x y z x y z

x

x

y

y

z

z

x y z x y z

x y z x y z

1 2

1 2

1 2 (12)

where

α
η

α α α

Θ

= −
−

−
+

α α α

α α α

α α

+ − − − + −

− −

⎡
⎣⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥⎥
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

A A A

a
a

A
a

A
a a

A A

(, ,)

(1)
1

2
1

a a a
x

x y z

L
x

x

x
x
a

a
x

x
x
a y

y

z

z

y
a

z
a

,

1 1 1

x y z x y z

a x x x x

y y z z (13)

The gradients with respect to Ay, Az, Bx, By, and Bz are similar
to eq 12.
In order to compute the analytic gradient of the total energy

with respect to the nuclear displacements, the analytic gradient
of the integrals need to be contracted with some given density
matrix as

∑ ∑
ξ

γΓ =ξ

+ + = + + =

P
d

dab
l

a a a
a a a L

b b b
b b b L

a a a b b b a a a b b b
l()

, , : , , :
, ,

x y z
x y z a

x y z

x y z b

x y z x y z x y z x y z

(14)

where Γab
l(ξ) is the gradient of the integrals contracted with the

corresponding block of the density matrix P, and ξ represents
the nuclear degree of freedom from either atom A or B.
Throughout this article, Γab

l(ξ) is used to illustrate computational
strategies.
In practice, the first step toward calculating the ECP integrals

and gradients is to compute the radial integrals R in eq 10,
which requires the parameters of the three Gaussian functions
involved (those of the basis functions and the ECP) as well as
their relative displacement vectors. We previously showed how
an adaptive quadrature strategy with screening could accelerate
radial integral evaluations.32 The radial integral is then
contracted with several other factors in a multilevel summation
to compute the integral in eq 7 and the gradient in eq 12.
Therefore, we now introduce a series of intermediate variables
to represent the contraction process, which will be used for
later analysis.
Here, we use the gradient Γab

l(ξ) in eq 14 as an illustration. The
array of radial integrals R is indexed by λ1, λ2, and N, where the
number of variables is determined by several conditions on the
indices forced by the summation rules in eq 12, i.e., λ1 ≤ l + La
+ 1, λ2 ≤ l + Lb + 1, λ1 + λ2 ≤ La + Lb + 1, and max(0, λ1 + λ2 −
2l) ≤ N ≤ La + Lb + 1. First, R(λ1, λ2, N) is contracted with an
angular factor Ωl,λ1λ2

αxαyαz,βxβyβz(rA, rB) that again depends on the

parameters of basis functions. This contraction eliminates the
λ1 and λ2 indices, resulting in an intermediate variable T

∑ ∑ α β ζ η η

=

+ + +

Ω

α α α β β β

λ

α

λ

β

λ λ

λ λ
α α α β β β

=

+

=

+

T

R n R R

r r

(2 , , , , ,)

(,)

l l

a A b B

l A B

,

0 0
,

,
,

x y z x y z

x y z x y z

1 2

1 2

1 2 (15)

where the six summation indices obey the conditions αx + αy +
αz ≤ La + 1, βx + βy + βz ≤ Lb + 1, and αx + αy + αz + βx + βy +
βz ≤ La + Lb + 1, and we have omitted the index l for clarity
because it is not a summation index. Next, T is contracted with
a different angular factor Θbxbybz,βxβyβz

0 (Bx, By, Bz) where the
indices βx, βy, βz are eliminated, resulting in another
intermediate variable G

∑ ∑ ∑

=

Θ

α α α

β β β
β β β α α α β β β

= = =

G

B B B T(, ,)

b b b

b b b

b b b x y z

,

0 0 0
,

0
,

x y z x y z

x

x

y

y

z

z

x y z x y z x y z x y z

(16)

By analogy, we define G̅ by contracting over the αx, αy, αz
indices

∑ ∑ ∑

̅ =

Θ

β β β

α α α
α α α α α α β β β

= = =

G

A A A T(, ,)

a a a

a a a

a a a x y z

,

0 0 0
,

0
,

x y z x y z

x

x

y

y

z

z

x y z x y z x y z x y z

(17)

Contracting over the last angular factor Θaxayaz,αxαyαz
x (Ax, Ay,

Az) and multiplying by some parameters gives the integral
gradient

∑ ∑ ∑

γ π=

Θ
α α α

α α α α α α
=

+

= =

A
d d d

A A A G

d
d

16

(, ,)

x
a a a b b b
l

u a b

a a a

a a a
x

x y z b b b

,
2

0

1

0 0
, ,

x y z x y z

x

x

y

y

z

z

x y z x y z x y z x y z

(18)

Finally, the integral gradient is contracted with the density
matrix, representing a 14-fold loop in total (as the 6-fold
summation in eq 14 has two constraints). The calculation of
the ECP integral is a 10-fold loop because it does not involve
contracting with the density matrix.
The calculations that transform the radial integral into the

ECP integrals and gradients present a large number of
possibilities in terms of which intermediate variables to store,
which intermediate variables are recomputed, and the possible
orderings of the computations. Here, we introduce a graph
representation to formalize these choices and apply ACE to
optimize the computations. Although Γab

l(ξ) is used as an
example for this article, other integrals or integral gradients are
generated and optimized in similar ways. The next section
describes how the equations are represented using a dependence
graph structure and a set of decisions, which together with the
dependence graph is referred to as a decision graph.

2.2. Design of Code Generator: Generating Different
Code Variants. The code generator is the most important
module in the ECP-ACE, as it generates the code candidates to
be profiled. The code generator has two major functions: (1)
generating multiple code variants and (2) performing loop
unrolling. As the registers are limited resources on the GPUs,
we design a code generator that can tune the register usage for

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

95

http://dx.doi.org/10.1021/acs.jctc.5b00790

different code variants in a controllable way. Therefore, we
adopt ideas from liveness analysis33 in compiler theory and the
interference graph34,35 which is closely related with register
allocation optimization.
A few important concepts about the interference graph are

(1) a variable is live if it holds a value that may be needed in the
future, (2) redefinition of a variable changes its value and
therefore is equivalent to destroying the old variable and
creating a new variable, and (3) variables a and b interfere if they
cannot be allocated to the same register at the same time, which
happens when a and b have overlapping live range. (4) An
interference graph is an undirected graph where nodes represent
variables and edges connect variables that interfere. The register
allocation problem can then be reinterpreted as coloring the
nodes in the interference graph with the minimum number of
colors, under the constraint that nodes connected by edges
cannot have the same color. If the minimum number of colors
K is less than the available number of registers Nreg, then the
compiler (e.g., nvcc) will allocate K registers for the function.
However, if K is greater than Nreg, then the compiler will select
nodes to push to the stack (register spilling), which we discuss
more below.
Concepts (3) and (4) suggest that the number of registers

consumed is closely related to the maximum number of
interfering variables. Concept (2) suggests that redefinition can
be used as a tool to reduce the number of interfering live
variables by recomputing some variables rather than keeping
them alive through the entire function. However, recomputing
intermediates increases the number of floating point operations
(flops). Therefore, the best code variant will be a trade-of f
between consumed f lops and register usage.

The above analysis suggests that we can generate code
variants with different flops-storage trade-offs by deciding which
intermediates to store and which to recompute on the fly. To
help generalize the decision procedure, we introduce two types
of graphs: (1) the dependence graph, which represents the
procedure for evaluating the integral expression and how
intermediates are related, and (2) the decision graph, which
represents the decisions regarding intermediate storage and
uniquely defines each code variant.36

2.2.1. Dependence Graph. Dependence analysis with its
graph representation is crucial in the development of compiler
technology. The data dependence,37,38 which represents
whether the computing of data a requires the knowledge of
another data b, i.e., a is dependent on b, is one of the
fundamental types of dependence relationships. Data depend-
ence has played an important role in the instruction scheduling
optimization in combination with control dependence anal-
ysis39,40 and program dependence analysis.41,42 Therefore, we
borrow the basic idea from the formal data dependence graph
used in the compiler theory and set up a simplified dependence
graph to facilitate the design of the code generator.
The dependence graph we set up has two basic components:

• Nodes. A node stores a list of mutually independent
values, and can be used to represent a collection of
variables identified by one or more summation indices.
Each node has the following associated properties: (1)
node index, (2) node name (which is a string to be used
for declaring variables in the generated code), (3) color,
which could be input, output, or intermediate, (4) an
ordered-list of the variables, and (5) a list of the
summation indices for each variable. For example, a node
representing G from eq 16 contains a list of variables as

Figure 1. General dependence graph describing the ECP gradient calculation in a GPU kernel. The nuclear gradients of the ECP integrals for a
primitive pair are computed as γl

Ax(a, b) and then contracted with the corresponding block of the density matrix P(a, b) to produce the final output,
Γl,ab
Ax . Nodes representing collections of variables and junctions representing mathematical relationships between nodes are described in Section 2.2.1.

Equation references describe how the variables in each node are computed. Indices of intermediate variables are represented as α = (αx, αy, αz), β =
(βx, βy, βz), a = (ax, ay, az), and b = (bx, by, bz). Params refer to parameters of basis functions, i.e., coordinates of atoms, exponential coefficients, and
contraction coefficients.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

96

http://dx.doi.org/10.1021/acs.jctc.5b00790

well as their corresponding summation indices αx, αy, αz,
bx, by, and bz.

• Junctions. A junction represents the mathematical
relationships among the variables in the three nodes
connected to it. There are two parent nodes above the
junction, whose variables are inputs for computing those
of the child node below. The Ith variable in the child node
cI can be computed from the variables in the two parent
nodes p and q as

∑ ∑= ̂
= =

c V p q(,)I
j

n

k

n

I j k j k
0 0

; ,

p q

(19)

where pj and qk denote the jth/kth variable of node p/
q, respectively. Therefore, each junction is associated
with the following properties: (1) pointers to the left
parent node, right parent node, and child node and (2) a
map of mathematical operations V̂I;j,k(pj, qk) that maps
the triplet (I,j,k) to a function that takes pj and qk as
arguments. The operation function V can take arbitrary
form and determines how pj and qk together contribute
to cI. The junction keeps track of all of the triplets (I,j,k)
where the contribution is nonzero. For example, a
junction that connects the parent nodes R(λ1, λ2, N) and
Ωl,λ1λ2

αxαyαz,βxβyβz(rA, rB) to the child node Tαxαyαz,βxβyβz requires
that the λ1 and λ2 indices match in the parent variables
and that the αx, etc. indices match between the variables
in Ω and T.

One possible dependence graph for the ECP gradient is
shown in Figure 1. The ECP integrals have a very special
property. For all junctions, one of the parent nodes depends
directly on the input nodes and is much easier to compute than
the other parent node (i.e., the angular factors mentioned
above). As a result, we can always compute the simpler parent
on the fly without much penalty. This procedure can be
interpreted as defining a new operator

∑ ∑ ∑= ̂ = ̂
= = =

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

c A q V p q() (,)I
k

n

I k k
k

n

j

n

I j k j k
0

;
0 0

; ,

q q p

(20)

The new operator ÂI,k can be represented as a dressed arrow.
By removing one of the parents for each junction, we get a
reduced dependence graph. The root of the reduced dependence
graph is the input node, and the leaves are the output nodes.
Each intermediate node has only one parent node, but it can
have multiple child nodes. Nodes with multiple child nodes are
called branching nodes. The reduced dependence graph for Γab

l(ξ)

is shown in Figure 2a. It has the following components:

• Nodes. The definitions of nodes are same as before.
• Arrows. Each arrow defines the relationship between the

parent node and child node it connects. It has the
following associated properties: (1) pointer to the parent
node, (2) pointer to the child node, and (3) operation
matrix elements ÂI,k. The matrix elements are repre-
sented as strings, which can be printed when generating
code. If ÂI,k = 0, then the Ith variable in the child node is
independent of the kth variable in the parent node.

The distances between nodes within the same graph are
defined as the shortest path connecting them. Therefore, for a
given reference node, it is possible to compare whether one
node is closer to the reference node than another.

In the code generator, each type of integral is represented by
its own initial dependence graph, which defines variables in the
nodes and operations in the arrows. Given the initial
dependence graph, the code generator first performs graph
transformations and creates several equivalent dependence
graphs with differing topology. One possible way to transform
one dependence graph into another is by removing the
branches. For example, the node Tαβ in Figure 2a is a branching
node with two child branches. According to the liveness
analysis, if we compute the left branch first, then the node Tαβ

interferes with the entire left branch because the right branch is
dependent on Tαβ. In order to remove this interference, we can
add another node T′ to the top of the right branch,
corresponding to recomputing the node Tαβ at the beginning
of the right branch. This node duplication (which can also be
thought of as branch removal) decreases the maximum number
of interfering variables but will increase the flops, which is
another example of the flops-storage trade-off. This basic idea is
illustrated in detail in Section 2 of the Supporting Information,
where we have included several other dependence graphs of
Γab
l(ξ) transformed from Figure 2a by removing branches.
In this article, we discuss code only generation from reduced

dependence graphs. We will talk about code generation from
general dependence graphs in a forthcoming paper.

Figure 2. (a) Reduced dependence graph of Γab
l(ξ) corresponding to the

full dependence graph in Figure 1. (b) One possible decision graph
corresponding to the reduced dependence graph of (a), which
represents code variant no. 6 in the main text. The notation for indices
is simplified by omitting the total angular momenta and abbreviating
variables with triples of indices as follows: G(α, b) → Gαb. The nuclear
degree of freedom is denoted ξ.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

97

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00790

2.2.2. Decision Graph Representation of Different Code
Variants. A decision graph has the same topology as the
dependence graph from which it is created, except that each
node colored as intermediate in the dependence graph is further
designated as stored or transient in the decision graph. The color
stored implies that variables in the nodes are computed only
once and stored in registers/memory for all future usage. The
color transient denotes that variables in the nodes are
recomputed on the fly whenever needed. Figure 2b shows
one possible decision graph corresponding to the dependence
graph in Figure 2a.
In order to generate codes from a decision graph, we use the

following strategy.

(1) If a node is designated as stored, then all subsequent
calculations depending on this node will read from its

stored values. Thus, we disconnect the graph at the
stored nodes into independent subunits with well-
defined structures. Each subunit represents a job to be
processed by the code generator. Processing a job refers
to generating the code that calculates the stored variables
for the graph subunit. Each job has a directionality,
starting from the stored nodes where the variables are
known, called the source, and moving forward in the
direction of arrows toward the stored nodes whose values
are to be computed, called the sink.

(2) The jobs need to be ordered such that dependencies are
satisfied and calculations are not repeated. To determine
this ordering, we create a job stack for each output node.
Starting with the first output node, the first job pushed
onto the stack is the subunit containing the output node

Figure 3. Graph representations of the basic propagations originating from any transient node in the graph (t) and ending at a stored node (Source/
Sink). Within each column, the graph on the left gives an illustration corresponding to the type of the propagation, and the graph on the right shows
the symbol that will be used to represent that propagation.

Figure 4. Graph representations of the three basic subunit structures. Within each column, the graph on the left gives an illustration corresponding
to the type of the basic subunit structure, and the graph on the right shows how the subunits can be divided into basic propagations. The node
labeled P represents the chosen primary node; note that in the closed connection any transient node may be chosen as primary. The node labeled B
represents the primary branching node.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

98

http://dx.doi.org/10.1021/acs.jctc.5b00790

itself. We then follow up the dependencies and search for
the next job that takes the source node of the first job as
its sink node. The detected job is pushed onto the stack.
This procedure is repeated recursively until the input
node is reached, which indicates that the whole stack of
the first output node has been built. The code to
compute the first output node is generated by popping
each job off the stack and processing it. For the
remaining output nodes, jobs are detected and pushed
onto the stack in the same recursive way until either it
reaches the input, where a complete job stack has been
built, or it encounters a job that has already been
processed, which indicates that codes corresponding to
the job and all jobs prior to it have been generated by a
previous output node.

Now that the decision graph has been broken down into an
ordered list of individual jobs, we consider how to generate the
code that computes the variables in the sink nodes from the
source node within a job. By examining any transient variable in
a graph subunit, we can identify two types of fundamental
operations:

(1) Backward propagation computes a variable by applying a
chain of operations starting from the closest source node.
Figure 3a shows the graph representation of a backward
propagation. As each node has only one parent node, the
direction of backward propagation is unique and defined
by the intermediate node T and the variable t that is
being computed. It can be constructed recursively, as
shown in Table S2 of the Supporting Information.

(2) Forward propagation applies a chain of operations to the
variable to compute its contribution to stored variables in
the sink node. Figure 3b shows the graph representation
of the simplest forward propagation, which has a single
sink node. As each node can have multiple child nodes, a
more general type of forward propagation can have
multiple sinks, as shown in Figure 3c. As the sink nodes
can potentially compete to be computed first, we assign
the left branches with higher priority to resolve the
ambiguity. Similar to backward propagation, both single
sink and multisink forward propagation can be
constructed recursively.

By using these two types of basic propagations, we can
construct three types of basic subunit structures.
(1). Closed Connection. Figure 4a shows the graph

representation of a closed connection. A closed connection is
a series of nonbranching nodes connecting a single source with
a sink. For each closed connection, one transient node needs to
be designated as primary representing the outermost loop. Each
variable in the primary node is computed using backward
propagation and contributes to variables in the sink using
forward propagation. Therefore, the closed connection is
uniquely defined by the chosen primary node and can be
divided at the primary node into a backward propagation
followed by a single sink forward propagation as shown in
Figure 4a.
From liveness analysis, the source node and the sink node are

interfering throughout the closed connection computation. As a
result, the size of the memory request for a closed connection is
equal to the number of variables in the source node plus the
number of variables in the sink node.
As we have discussed before, variables in the primary node

are computed only once, whereas variables in other transient

nodes are computed multiple times, as required by the
propagation steps. The choice of primary node in closed
connections does not affect storage but could have an impact
on flops. For example, it is always preferable to choose a
transient node instead of the source node as primary; since
retrieving variables from the source node has no flop cost,
designating it as primary and accessing it the least number of
times are not beneficial to the performance. In contrast,
choosing a transient node as primary may potentially reduce
the total number of flops, as it minimizes the number of
requests to the variables belonging to the primary node, which
are accessible only at the cost of floating point operations.

(2). Transient Branching. Figure 4b shows the graph
representation of a transient branching structure, which
contains one source node, one or multiple transient branching
nodes, and multiple sink nodes. If there are multiple transient
branching nodes, then the one closest to the source node will
be chosen as the primary branching node, which defines the
transient branching structure. This is the only branching node
that can be chosen as primary because it is connected to all
sinks by forward propagation. By splitting the graph at the
primary branching node, a transient branching subunit can be
divided into a backward propagation from the primary
branching node, followed by a multisink forward propagation,
as shown in Figure 4b.
By liveness analysis, the source node and all sink nodes

interfere with each other. Therefore, the memory request for a
transient branching structure is the number of variables in the
source nodes plus the sum of the number of variables in the
sink nodes.

(3). Stored Branching. Figure 4c shows the structure of a
stored branching structure containing one source node, one
stored branching node, and multiple sink nodes. As shown in
Figure 4c, by disconnecting the graph at the stored branching
node, the stored branching subunit can be divided into closed
connections and transient branching subunits. Therefore, the
stored branching structure does not need to be included as a
basic subunit structure; however, the stored branching node
affects the liveness analysis because it interferes with all nodes
on its branches except the rightmost branch.
The above analysis shows that the entire decision graph can

be split into either closed connections (identified by the
primary node) or transient branching structures (identified by
the primary branching node), corresponding to different types
of jobs (i.e., kinds of generated code). Table S2 provides the
pseudocode for the processing of different job types. Step IV in
Figure 5 illustrates the job stack and processing order for the
decision graph in Figure 2b.

2.2.3. Summary of ACE-Code Generator. Figure 5 shows
the workflow of the code generator that uses the reduced
dependence/decision graph to generate all possible code
variants known to the code generator. A code variant is
uniquely defined by the structure of its decision graph, the
decisions regarding stored or transient colorings of inter-
mediate nodes, and the designation of primary nodes in closed
connections with multiple transient nodes.
For each code variant generated, the code generator reports

the floating point operations (flops) and the maximum number
of interfering variables of any individual subunit.43 If there was
an infinite number of registers, then the maximum interfering
variables reported provides an estimate to the number of
registers required. However, when register spilling takes place
due to limited physical registers, analysis becomes much more

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

99

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00790

complicated. First, it is usually difficult to predict which variable
the compiler will choose to push to the stack (which is also
called local memory for CUDA-GPUs). Second, the compiler
has to transform the code as pushing a variable to the stack.
Loading a variable from the stack is at least accompanied by
allocating an additional variable in the registers and performing
a load instruction from the stack to the register. The number of
load/store instructions issued due to register spilling is not easy
to predict; the additional variable may also cause spilling on
other variables and trigger further code transformations. This is
especially notable in kernels with larger angular momentum, as
register spilling becomes severe. As will be shown in the Results
and Discussion, when register spilling happens, the stack used
may not be closely correlated with the maximum number of

interfering live variables, and the large number of load/store
instructions issued may sometimes become the bottleneck.
The code generator performs loop unrolling as it generates

each code variant. The loop unrolling has three benefits:

(1) Reducing loop overhead.
(2) Reducing stack usage: compared with CPUs, load/store

instructions with stacks on GPUs are much slower.
Allocating arrays on the stack is required if values need to
be loaded from/written to an address depending on the
iterator. As registers are not indexable, unrolling the
loops can avoid the usage of arrays as all indices are
known at compilation time. A series of instructions
associated with array manipulations may also be avoided.

(3) Using compile time constants. Coefficients like

∫ SlmSλμxni ynj znk dΩ and α()ax
x do not depend on

parameters of the primitive Gaussian functions except
the angular momentum; the values of these functions are
evaluated by the code generator and written to the
generated code, so they need not be evaluated at run
time.

However, the downside of loop unrolling is that it increases
the size of the codes; this increases the search space for the
compiler and could make compiler optimization more difficult.
The generated code depends on the ordering of variables

within a node, which could potentially influence the perform-
ance. In this work, we stick with one predefined ordering for all
of the illustrated results. However, users can provide other
orderings to the code generator, which allows the exploration of
many more code variants. In principle, this could be automated
and the code generator could scan over many possibilities.
However, the number of code variants will grow quickly, so
some form of model-based optimization approach would be
well-advised if this strategy was to be pursued.

2.3. GPU Configuration Parameters. In addition to the
code variants, the hardware configuration settings defined at
compile-time can also affect performance. We consider the
following GPU configuration parameters: (1) the maximum
number of registers per thread allowed, (2) number of threads
per block, and (3) L1 cache/shared memory configuration
(applicable to architectures prior to Maxwell). All three
parameters can change how many active warps/blocks can be
executed simultaneously on a streaming multiprocessor, which
can be evaluated as achieved occupancy (i.e., the average
fraction of warps that are active on a multiprocessor), as
discussed below.
The first parameter changes the number of registers required

per thread and is passed to the CUDA compiler using the
-maxrregcount flag. Setting a large number of registers per
thread may increase performance by avoiding register spilling
within each warp, but it may also decrease performance as the
number of warps that can be executed simultaneously decreases
due to the limited size of register files.
The second parameter changes the size of shared memory

required per block. In ECP gradient computations, the shared
memory requested is linearly dependent on the block size and
is used for contracting gradients on the same ECP centers. The
block size can be changed when launching kernels. Requiring
more shared memory per block can increase performance by
enabling more communication and contraction between
threads within a block, but the downside is the reduced

Figure 5. Workflow of code generator for producing all possible code
variants for a chosen integral type. Notation follows Figure 2. Graph
representations in steps II and III are toy models. The decision graph
in Figure 2b is used as an illustration for step IV; the disconnected
subunits are pushed into the job stack for each output node, and the
code generator produces code for each subunit in the indicated order.
Note that since each closed connection (2−7) has only one transient
node it automatically becomes the primary node.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

100

http://dx.doi.org/10.1021/acs.jctc.5b00790

occupancy due to hardware limitations on the amount of
physical shared memory.
Unlike the above two parameters, which change the requests

for each warp/block, the last parameter influences the
occupancy and the performance by changing how the same
physical resources are partitioned between different usages. For
architectures prior to Maxwell, the L1 cache and shared
memory use the same physical hardware resources and the split
between these can be set in software. The Fermi architecture
supports 16 KB/48 KB or 48 KB/16 KB partitions between
shared/L1 cache memory, and the Kepler architecture supports
an additional 32 KB/32 KB partition. The preference can be set
separately in each kernel by calling cudaFuncSetCacheConf ig().
According to the discussion for block size, larger shared
memory configuration can increase occupancy, but the
consequence of reducing L1 cache size is an increase in load/
store misses from L1 and, consequently, more load/store from
L2 cache or global memory, which have much higher latency.
Therefore, there is a trade-off between shared memory and L1
cache that may be worth tuning.
There are many combinations between code variants and

GPU configurations. We use the term code candidate to
represent a specific combination of a code variant and GPU
configuration. Although one could test all of the possible
combinations of code variants and GPU configurations, the
number of code candidates would rapidly become very large,
making the optimization prohibitively time-consuming. There-
fore, during the optimization, we first find the optimal code
variants under default GPU configurations: block size is set to
64; maximum number of registers per thread is 63 for CC2.0
and CC3.0 and 225 for CC3.5 and CC5.0; and L1/shared

configuration is 16 KB/48 KB partition. We then optimize the
GPU configuration for the optimal code variant.

2.4. Code Tester and Code Optimizer. The code tester
and code optimizer are the other two components in ACE. The
code tester is responsible for compiling the code candidates and
verifying whether each compiled code candidate can correctly
reproduce the Fock matrix and gradients. The code generator
emits formally correct code by construction, but it is
nevertheless prudent to test for correctness explicitly. This
ensures that any potential roundoff errors from reordering
floating point operations will be flagged. The ACE framework
will consider only code candidates that pass the correctness
check in the code tester. Currently, the code tester simply
works by comparing the result of running the generated code
on a test system with a reference result stored on the disk.
The code optimizer collects timing data and analyzes the

results. Suppose that there are Ntest test systems, Nrun timings
are collected for each test system, and the time of code
candidate I on test system s in the nth run is ts,n

I . We compute
the mean time of each code candidate as the average time over
all runs

∑ ∑=
= =

I
N

tmean time()
1

n

N

s

N

s n
I

run 1 1
,

run test

(21)

The code candidate with the smallest mean time is then
selected as the optimal one.
In order to get accurate and valid timing data, two questions

need to be addressed. The first question is how to do deviation
detection. To prevent including timing data with large
deviation, here we compute the standard deviation of the set
{ts,n

I |1 ≤ n ≤ Nrun} before computing the mean time. If the

Figure 6. User interface and workflow of ACE. The user requests which type of integral to be optimized, the highest angular momentum, numerical
precision, and GPU computing capability. The main driver validates the user input and runs two optimization cycles: first optimizing over the code
variants under the default GPU configuration and then optimizing over the GPU configurations for the chosen variant. The driver then returns the
optimized kernels to the user.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

101

http://dx.doi.org/10.1021/acs.jctc.5b00790

standard deviation exceeds some user defined threshold, then
the entire set is discarded and the corresponding calculations
will be run and timed again. The second question is what
requirements a proper test system should satisfy; we simply
require that the system should be large to provide enough
primitive Gaussian basis functions and ECP primitive functions.
From a data analysis point of view, large testing systems tend to
have smaller coefficients of variation; from the performance
point of view, whether the card is saturated or not may have a
large impact on the performance evaluation. We describe how
the test results depend on system size in the Supporting
Information.
The entire workflow of ACE is described in Figure 6. The

main driver collects information about the user’s platform and
analyzes the user’s requests; it then performs two optimization
cycles, as shown in Figure 6. The first cycle optimizes the code
variants under the default GPU configurations, and the second
cycle optimizes the GPU configurations for the optimal code
variants. After the two optimization cycles are completed, the
driver signals the user and hands back the final optimal
programs.

3. RESULTS AND DISCUSSION
In this section, we compare and discuss the performance data
collected by ACE. We tested ACE for ECP integrals and
gradients on four different platforms: NVIDIA Tesla S2050
(Fermi architecture, CC2.0), NVIDIA GeForce 680 (Kepler
architecture, CC3.0), NVIDIA GeForce Titan (Kepler
architecture, CC3.5), and NVIDIA GeForce 970 (Maxwell
architecture, CC5.0). For simplicity, we use the shorthand
notation Precision-l-LaLb to denote the type of gradients
computed. For example, Double-0-PP represents the kernel
that computes Γab

l(ξ) in double precision with (l = 0, La = 1, Lb =
1). We used two spherically shaped quantum dots with
molecular formula Cd211Se211 and Zn211Te211 with the
LANL2DZ basis set and ECP as test systems, as shown in
Figure 7. Detailed information about the test systems are given
in Table 2. Timings on each system are run three times.
3.1. Code Variant Optimization. We start by comparing

the performance among 36 different code variants with the
kernel and GPU architecture held constant. The 36 code
variants are all generated based on the four dependence graphs
in Figure S1, under the constraint that nodes with the same

depth receive the same coloration. Figure 8 shows the
performance comparison for Double-0-FF on a CC 3.5 GPU,

demonstrating large performance differences among different
code variants. The performance difference between the slowest
and fastest code variants is more than a factor of 6, and the
difference for Float-0-FF is even greater (see Figure S2). In
addition, there are no obvious correlations between the
performance and the theoretical flops or maximum interfering
variables. Therefore, it is difficult to predict the optimal code
variant for the target kernel without performance testing.
We also found that the optimal code variant depends

significantly on the target kernel and architecture. In order to
better understand this dependence, we carried out a detailed
analysis on 10 chosen code variants with relatively good
performance and a clear flop-memory trade-off (these are
labeled in Figure 8). The decision graphs corresponding to the
10 chosen variants are given in Figure S3. The 10 code variants
are sorted in decreasing order of flops-to-memory ratio, such
that variant no. 1 has the largest number of interfering live

Figure 7. Geometry of the Cd211Se211 test system. Se atoms are
colored yellow; Cd atoms are colored blue. Zn211Te211 has the same
geometry as Cd211Se211.

Table 2. Details of the Test Systemsa

Cd211Se211 Zn211Te211

total no. of AOs 8440 8440
s-contracted functions 844 844
p-contracted functions 2532 2532
d-contracted functions 5064 5064
s-primitive functions 1266 1266
p-primitive functions 1266 1055
d-primitive functions 1477 1688

aThe LANL2DZ basis set and ECP are used. Since Se and Te atoms
do not have d-atomic orbitals in this basis set, we increased the
number of kernel calls involving d-primitive Gaussian functions in the
test system by adding two d-shells for Se and Te atoms with
parameters (exponents and contraction coefficients) chosen to be the
same as their p-shells.

Figure 8. Performance comparisons among 36 code variants for
Double-0-FF (double precision, l = 0, La = 3, Lb = 3) on CC3.5
architecture. Normalized time is computed as the mean time of each
code variant, as defined in eq 21, divided by the mean time of the
optimal code variant. To show the differences among code variants
clearly, the position of 1.0 is marked on each bar. The 10 code variants
selected for in-depth analysis in the main text are labeled using
numbers 1−10.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

102

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00790

variables and variant no. 10 requires the largest number of flops
(see Figure S4).
We summarize the relative performance among the 10

selected code variants for double precision kernels with l = 0 on
different architectures in Figure 9. A similar comparison for

double precision kernels with l = 1 and l = 2 is given in Figure
S5. In general, different code variants are optimal for different
architectures and some of the observed differences can be
rationalized on the basis of architectural features.
The CC5.0 architecture supports up to 255 registers per

thread and has the largest register file size and cache size.
However, its double precision peak performance is low, only
1/32 of its single precision peak performance, as shown in Table
S1. Therefore, the optimal code variants on CC5.0 usually have
a lower flops-to-mem ratio. The most flop-intensive code
variants, like nos. 8−10, do not perform well on CC5.0.
The CC2.0 architecture is quite the opposite from CC5.0. Its

double precision peak performance is half of its single precision
peak performance. However, it supports only 63 registers per
thread, and its register file size is the smallest; therefore, register
spilling has a more significant performance impact for CC2.0.
For kernels with small register spilling, like Double-0-SS to
Double-0-PP, flop-intensive code variants are usually the
optimal ones. As the angular momentum of the basis functions
increases (e.g., Double-0-DD), flop-intensive code variants

become less favorable since load/store instructions caused by
register spilling start to dominate the computations (discussed
in detail below), and the optimal code variants gradually shift to
the ones with more balanced flop-mem trade-off. CC3.0 also
supports only 63 registers per thread, but nearly every other
feature is improved over CC2.0. The best-performing code
variants in CC3.0 also favor the flop-intensive side, although the
performance differences are not as large as CC2.0.
For CC3.5, the optimal code variants have a more diffuse

distribution than the others. CC3.5 combines the advantages of
CC2.0 and CC5.0; it also supports 255 registers per thread, and
its double precision peak performance is about one-third of its
single precision peak performance. Therefore, code variants
with higher memory requests and code variants with higher
flops may achieve the same good performance, which makes
predicting the optimal code variant much more difficult.
Although Figure 9 (and Figure S5) appears to show some

general trends for different architectures, it also indicates that
the optimal code variant for each individual kernel does not
follow a regular pattern. When comparing Double-0-DD (row
7), Double-0-PD (row 8), and Double-0-PP (row 9) on the
CC3.5 architecture, the performance ranking across variants is
quite different depending on the particular kernel. Variant no.
10 is the fastest for DD, but it is almost the slowest for PP and
PD; on the other hand, variant nos. 1 and 7 are among the
fastest for PP and PD but perform poorly for DD. The optimal
code variants on CC2.0 also depend on the angular momentum
as shown in Figure 9, but not in the same way as CC3.5. In fact,
the optimal code variant for one architecture often has bad
performance on another; for example, variant no. 4 which is
optimal for PD on CC2.0 (row 20) is the worst on CC3.5, and
variant no. 1 which is among the best for PP and PD on CC3.5
becomes the worst on CC2.0 (rows 20 and 21). These
comparisons are also illustrated as a bar chart in Figure S7.
To understand the irregularities in performance rankings, we

examined several profiling metrics measuring the number of
instructions and local memory transactions, which are given in
Tables S4 and S5. We found that the factors limiting
performance may vary strongly with the choice of kernel and
architecture. Our results from examining PD on CC3.5 indicate
that the performance of the slowest variant is limited by the
large number of floating point operations. On the other hand,
the performance of DD on CC3.5 is limited by register spilling
and local memory transactions, since DD involves more
intermediate and output variables than PP or PD. When
comparing architectures, CC2.0 has far fewer registers than
CC3.5 (63 vs 255), which means register spilling becomes
more severe. We observed that for DD on CC2.0 variant no. 8
has a larger number of load/store operations than no. 4, despite
variant no. 8 being explicitly designed to have fewer interfering
variables and more flops. This provides an example for the
complexity that arises when register spilling happens, as it
becomes difficult to predict the code that will be produced by
the compiler.
To summarize, the irregular dependence of our observed

performance rankings on the kernel and GPU architecture can
be explained by examining the profiling metrics, but it also
presents a significant challenge for model-based optimization
approaches to predict the performance accurately. The model
should be sensitive to the details of the kernel and architecture
in order to determine which factors limit performance and
when register spilling could make the performance much more
unpredictable. In-depth analyses of the profiling metrics that

Figure 9. Performance ranking of code variants. Each row shows a
different kernel where the primitive angular momentum and GPU
architecture are varied. All kernels shown use l = 0, double precision,
and the default GPU configuration. Within each row, the performance
of the code variants is compared; the star represents the best code
variant, the color of the circles represents the ranking of the variants as
shown in the legend, and the radius of the circles indicates the
performance of each variant relative to the optimal one (the smaller
the radius, the lower the performance).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

103

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00790

support these conclusions are provided in the Supporting
Information.
3.2. GPU Configuration Optimization. We show how the

GPU configuration can influence the performance for the
optimal code variants selected in the previous sections. We use
CC3.5 as an example and choose three different maximum
numbers of registers per thread (64, 128, 256), three different
block sizes (64, 128, 256), and two different L1/Shared
partitions (L1-preferred, i.e., 48 KB/16 KB, and Shared-
preferred, i.e., 16 KB/48 KB). These give us 18 different
combinations of configuration parameters. It turns out that the
optimal GPU configuration, especially the maximum number of
registers per thread, is not the same for different kernels, as
shown in Figure 10. For the Double-0-DD kernel (Figure 10b),

the default GPU configuration parameters give near-optimal
performance, and tuning the parameters yields a negligible 2−
3% improvement. For Double-0-SD (Figure 10a), tuning the
configuration parameters yields a performance increase of
∼15% over the default. In either case, the impact of tuning
GPU configuration parameters has a smaller impact compared
to the choice of code variant.

For kernels with high angular momentum like Double-0-DD,
it is expected that 255 registers per thread gives the best
performance, as it reduces the local memory transactions as
much as possible. In contrast, smaller number of registers per
thread performs better for kernels with smaller angular
momentum like Double-0-SD. Take block size 64 with L1-
preferred partition as an example. When compiled with
maxrregcount = 255, Double-0-SD uses 202 registers. When
compiled with maxrregcount = 127, Double-0-SD uses all 127
registers plus 216 bytes of local memory. Despite the register
spilling caused by smaller number of registers allowed, the
achieved occupancy between maxregcount = 255 and 127 is
0.1190 versus 0.2356, which indicates that more warps can be
executed simultaneously. This gives an example to show that
register spilling is not always harmful, and the trade-off between
register spilling and achieved occupancy can be tuned to
achieve better performance.
For ECP calculations, the effects from adjusting block sizes

and L1/Shared partitions are smaller than changing the register
configuration. This could be because the shared memory is
accessed only at the end of each loop over ECP centers and
does not participate in the intermediate calculations. Therefore,
configurations related to the shared memory should not make a
large difference. Despite this, we observed that smaller block
sizes and larger L1 partitions tend to lead to better
performance. The former may result in better achieved
occupancy, and the latter may result in a higher L1 cache hit
rate.
It is worth noting that the optimal code variant may, in fact,

depend on the GPU configuration parameters, a possibility that
we did not fully investigate. More complete explorations of the
space of code candidateseither by means of a full search over
the space of code variants and GPU configurations or iterating
back and forth between code variants and GPU configurations
until convergencemay be requested by the user in order to
investigate these possibilities.

4. CONCLUSIONS
We presented the automated code engine for graphical
processing units that automatically generates optimized integral
kernels for a given GPU computing platform. The use of graph
representations for the basic equations allows the ACE-code
generator to be generalized to other types of integrals. The
application to ECP integrals demonstrates the complex factors
that influence performance and the challenges associated with
correct prediction of optimal code variants. The profile-guided
optimization strategy adopted by the ACE-code optimizer,
which scans over the space of code candidates and chooses the
best one from empirical testing, greatly simplifies the
optimization procedure and is easily adaptable to the fast
evolution of GPU computing architecture.
There are several future directions for further improvement

and application of ACE. One improvement is to generate codes
based on the general dependence graph where multiple parent
nodes are allowed for each node. Although the single parent
node restriction embedded in the reduced dependence graphs
works well for the ECP integral and gradient calculations, the
restriction is too strong for other types of integrals. More
complex integrals where this restriction should be lifted include
the two-electron, three-center integrals and gradients (the
foundation of density-fitting methods) and two-electron, four-
center integrals and gradients (needed for Fock matrix element
evaluation).

Figure 10. Performance comparison of different GPU configurations
for two different kernels: (a) Double-0-SD and (b) Double-0-DD,
both on CC3.5. Normalized time is computed with respect to the
fastest configuration. Each comparison uses the code variant optimized
under the default GPU configuration (blue), corresponding to block
size equal to 64, 16 KB/48 KB partition of L1/shared memory, and
225 registers per thread. In the legend, L1 (respectively, Shared)
denotes a 48 KB/16 KB (respectively, 16 KB/48 KB) partitioning
between L1 cache and shared memory. The second integer in the
legend represents the block size.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

104

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.5b00790

Another crucial requirement for applying ACE to more
complex integrals is automatic exploration of more types of
dependence graph transformations. Here, we have already
described graph transformations regarding the branching
structures, but other types of transformations are possible
that become important for different types of integrals. One
topic of current study is the formulation of recursion
relationships in terms of dependence graph transformations,
enabling automatic discovery and testing of different recursion
paths. Another possible transformation is systematic splitting of
output nodes. For example, the FF kernel has high register and
memory pressure because each thread needs to compute and
store the entire 10 × 10 matrix of final integrals. Alternatively, a
group of several kernels can be generated to work
independently where each computes and stores only a part of
the full matrix. This strategy repeats computations in order to
reduce the number of stored variables and is appealing for
higher angular momentum because it reduces the register and
memory pressure for each individual kernel.
Combining the possible dependence graphs and their

associated decision graphs leads to an exponential increase in
the space of potential code variants. This can make it
challenging to generate, compile, and test all of the resulting
code variants. One possible solution is to allow ACE to score
each of the code variants before entering the optimization step.
As the maximum interfering variables and the number of
floating point operations are directly available from the code
generator, cost models can be applied to estimate the
performance as a function of the interfering variables and the
flops. This could allow ACE to screen out code variants with
unreasonably high storage or flop requirements, reducing the
number of code variants that need to be compiled and tested,
thus combining the advantages of model-driven and profile-
guided approaches.
Currently, the initial dependence graphs representing

different integrals are set up by the programmer manually
from analyzing the equations. It will be appealing to study the
systematic creation of initial dependence graphs based on just
the mathematical expression for the integral, which can make
ACE applicable to a much broader range of problems in
electronic structure theory. Work along these lines is in
progress.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.5b00790.

Detailed performance statistics and code analysis as well
as pseudocode describing the implementation of ACE
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: todd.martinez@stanford.edu.
Present Address
§Department of Chemistry, University of California at Davis.
Funding
This work was supported by the National Science Foundation
(ACI-1450179) and the DOE Office of Basic Energy Science
through the Predictive Theory of Transition Metal Oxide
Catalysis Grant. T.J.M. is grateful to the Department of Defense
(Office of the Assistant Secretary of Defense for Research and

Engineering) for a National Security Science and Engineering
Faculty Fellowship (NSSEFF). C.S. is grateful for a Stanford
Graduate Fellowship.

Notes
The authors declare the following competing financial
interest(s): T.J.M. is a cofounder of PetaChem, LLC.

■ REFERENCES
(1) McMurchie, L. E.; Davidson, E. R. One-electron and 2-electron
integrals over Cartesian Gaussian functions. J. Comput. Phys. 1978, 26,
218.
(2) Chiodo, S.; Russo, N. Determination of spin-orbit coupling
contributions in the framework of density functional theory. J. Comput.
Chem. 2008, 29, 912.
(3) Helgaker, T.; Taylor, P. R. On the evaluation of derivatives of
Gaussian integrals. Theor. Chim. Acta 1992, 83, 177.
(4) Yasuda, K. Two-electron integral evaluation on the graphics
processor unit. J. Comput. Chem. 2008, 29, 334.
(5) Ufimtsev, I. S.; Martinez, T. J. Quantum chemistry on graphical
processing units. 1. Strategies for two-electron integral evaluation. J.
Chem. Theory Comput. 2008, 4, 222.
(6) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical
Processing Units. 2. Direct Self-Consistent-Field Implementation. J.
Chem. Theory Comput. 2009, 5, 1004.
(7) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on Graphical
Processing Units. 3. Analytical Energy Gradients, Geometry
Optimization, and First Principles Molecular Dynamics. J. Chem.
Theory Comput. 2009, 5, 2619.
(8) Compute Capability (CC) is NVIDIA’s version system for GPU
hardware. Different CC versions have different hardware designs,
resources, and available instruction sets.
(9) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.;
Windus, T. L. Uncontracted Rys Quadrature Implementation of up to
G Functions on Graphical Processing Units. J. Chem. Theory Comput.
2010, 6, 696.
(10) Miao, Y.; Merz, K. M., Jr. Acceleration of High Angular
Momentum Electron Repulsion Integrals and Integral Derivatives on
Graphics Processing Units. J. Chem. Theory Comput. 2015, 11, 1449.
(11) Appel, A. W.; Ginsburg, M. Modern Compiler Implementation in
C; Cambridge University Press: Cambridge, UK, 2004.
(12) Jones, H. W. Computer-generated formulas for overlap integrals
of Slater-type orbitals. Int. J. Quantum Chem. 1980, 18, 709.
(13) Jones, H. W. Computer-generated formulas for some 3-center
molecular integrals over Slater-type orbitals. Int. J. Quantum Chem.
1983, 23, 953.
(14) Bracken, P.; Bartlett, R. J. Calculation of Gaussian integrals
using symbolic manipulation. Int. J. Quantum Chem. 1997, 62, 557.
(15) Strange, R.; Manby, F. R.; Knowles, P. J. Automatic code
generation in density functional theory. Comput. Phys. Commun. 2001,
136, 310.
(16) Seidler, P.; Christiansen, O. Automatic derivation and evaluation
of vibrational coupled cluster theory equations. J. Chem. Phys. 2009,
131, 234109.
(17) Janssen, C. L.; Schaefer, H. F. The automated solution of 2nd
quantization equations with applications to the coupled cluster
approach. Theor. Chim. Acta 1991, 79, 1.
(18) MacLeod, M. K.; Shiozaki, T. Communication: Automatic code
generation enables nuclear gradient computations for fully internally
contracted multireference theory. J. Chem. Phys. 2015, 142, 051103.
(19) Baumgartner, G.; Cociorva, D.; Bibireata, A.; Gao, X. Y.;
Krishnamoorthy, S.; Krishnan, S.; Lam, C. C.; Lu, Q. D.; Sibiryakov,
A.; Pitzer, R. M.; Sadayappan, P.; Bernholdt, D. E.; Choppella, V.;
Hirata, S.; Ramanujam, J.; Nooijen, M.; Auer, A. Computer aided
implementation of many-body methods: The tensor contraction
engine. Abstr. Pap. Am. Chem. Soc. 2003, 226, U303.
(20) Hartono, A.; Lu, Q.; Henretty, T.; Krishnamoorthy, S.; Zhang,
H.; Baumgartner, G.; Bernholdt, D. E.; Nooijen, M.; Pitzer, R.;
Ramanujam, J.; Sadayappan, P. Performance Optimization of Tensor

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

105

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00790
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5b00790/suppl_file/ct5b00790_si_001.pdf
mailto:todd.martinez@stanford.edu
http://dx.doi.org/10.1021/acs.jctc.5b00790

Contraction Expressions for Many-Body Methods in Quantum
Chemistry. J. Phys. Chem. A 2009, 113, 12715.
(21) Panyala, A.; Bhattacharya, P.; Baumgartner, G.; Ramanujam, J.
Model-Driven Search-Based Loop Fusion Optimization for Handwritten
Code, Proceedings of the 17th Workshop on Compilers for Parallel
Computers (CPC ′13), Lyon, France, July 3−5, 2013.
(22) Fermann, J. T.; Valeev, E. F. Libint: machine-generated library for
efficient evaluation of molecular integrals over Gaussians, 2003. https://
github.com/evaleev/libint.
(23) Valeev, E. F.; Janssen, C. L. Second-order M?ller-Plesset theory
with linear R12 terms (MP2-R12) revisited: Auxiliary basis set method
and massively parallel implementation. J. Chem. Phys. 2004, 121, 1214.
(24) Whaley, R. C.; Dongarra, J. J. Automatically tuned linear algebra
software, SC98: 10th Anniversary: High Performance Networking and
Computing Conference (cat. no. RS00192), 1998; p 33.
(25) Frigo, M.; Johnson, S. G. The design and implementation of
FFTW3. Proc. IEEE 2005, 93, 216.
(26) Whaley, R. C.; Petitet, A.; Dongarra, J. J. Automated empirical
optimizations of software and the ATLAS project. Par. Comp. 2001,
27, 3.
(27) Goto, K.; Van De Geijn, R. High-performance implementation
of the level-3 BLAS. ACM Trans. Math. Soft. 2008, 35, 1.
(28) Lu, Q.; Gao, X.; Krishnamoorthy, S.; Baumgartner, G.;
Ramanujam, J.; Sadayappan, P. Empirical performance model-driven
data layout optimization selection for tensor contraction expressions. J.
Par. Dist. Comp. 2012, 72, 338.
(29) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J.
Generating Efficient Quantum Chemistry Codes for Novel Archi-
tectures. J. Chem. Theory Comput. 2013, 9, 213.
(30) McMurchie, L. E.; Davidson, E. R. Calculation of integrals over
ab initio pseudopotentials. J. Comput. Phys. 1981, 44, 289.
(31) Kahn, L. R.; Goddard, W. A. Ab-Initio effective potentials for
use in molecular calculations. J. Chem. Phys. 1972, 56, 2685.
(32) Song, C.; Wang, L.-P.; Sachse, T.; Preiss, J.; Presselt, M.;
Martinez, T. J. Efficient Implementation of Effective Core Potential
Integrals and Gradients on Graphical Processing Units (GPUs). J.
Chem. Phys. 2015, 143, 014114.
(33) Allen, F. E.; Cocke, J. Program data flow analysis procedure.
Commun. ACM 1976, 19, 137.
(34) Chaitin, G. J.; Auslander, M. A.; Chandra, A. K.; Cocke, J.;
Hopkins, M. E.; Markstein, P. W. Register allocation via coloring.
Comp. Lang. 1981, 6, 47.
(35) Chaitin, G. J. Register allocation & spilling via graph coloring.
ACM Sigplan Not. 2004, 39, 66.
(36) As there are several types of graphs that we mention in this
article, we clarify that the figures and the graph structures in ACE
consist only of dependence graphs and decision graphs; the
interference graph is a guiding concept that helps to explain register
spilling and estimate memory usage.
(37) Dennis, J. B. First Version of a data flow procedure language.
Programming Symposium 1974, 19, 362.
(38) Dennis, J. B. Data flow supercomputers. Computer 1980, 13, 48.
(39) Allen, F. E. Interprocedural analysis and the information derived
by it. Prog. Meth. 1975, 23, 291.
(40) Treleaven, P. C.; Hopkins, R. P.; Rautenbach, P. W. Combining
data flow and control flow computing. Comp. J. 1982, 25, 207.
(41) Ferrante, J.; Ottenstein, K. J.; Warren, J. D. The program
dependence graph and its use in optimization. ACM Trans. Prog. Lang.
1987, 9, 319.
(42) Ottenstein, K. J.; Ottenstein, L. M. The program dependence
graph in a software-development environment. Sigplan Notices 1984,
19, 177.
(43) The actual number of allocated registers reported by the
compiler may be even higher than the number of interfering variables
that we calculate here since we do not explicitly reuse variable names
in the generated code. This aspect will be addressed in future work.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.5b00790
J. Chem. Theory Comput. 2016, 12, 92−106

106

https://github.com/evaleev/libint
https://github.com/evaleev/libint
http://dx.doi.org/10.1021/acs.jctc.5b00790

