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ABSTRACT An increasing number of proteins have been demonstrated in recent years to adopt multiple three-dimensional
folds with different functions. These metamorphic proteins are characterized by having two or more folds with significant differ-
ences in their secondary structure, in which each fold is stabilized by a distinct local environment. So far, �90 metamorphic pro-
teins have been identified in the Protein Databank, but we and others hypothesize that a far greater number of metamorphic
proteins remain undiscovered. In this work, we introduce a computational model to predict metamorphic behavior in proteins
using only knowledge of the sequence. In this model, secondary structure prediction programs are used to calculate diversity
indices, which are measures of uncertainty in predicted secondary structure at each position in the sequence; these are then
used to assign protein sequences as likely to be metamorphic versus monomorphic (i.e., having just one fold). We constructed
a reference data set to train our classification method, which includes a novel compilation of 136 likely monomorphic proteins
and a set of 201 metamorphic protein structures taken from the literature. Our model is able to classify proteins as metamorphic
versus monomorphic with a Matthews correlation coefficient of �0.36 and true positive/true negative rates of �65%/80%, sug-
gesting that it is possible to predict metamorphic behavior in proteins using only sequence information.
SIGNIFICANCE This article introduces the diversity index as a descriptor to distinguish metamorphic proteins, which
possess multiple stable folds, from monomorphic proteins that possess only onefold. The diversity index is designed to
measure uncertainty in computationally predicted secondary structure, which we hypothesize is elevated for metamorphic
proteins. We tested our hypothesis by training a binary classifier using the diversity index and an annotated data set of
metamorphic and monomorphic proteins and found an optimal Matthews correlation coefficient of 0.36, supporting the
hypothesis and demonstrating for the first time, to our knowledge, that it is possible to predict metamorphic behavior in
proteins using only sequence information. The sequence-based classifier has broader applicability compared to methods
that rely on making comparison to experimentally measured structures.
INTRODUCTION

Christian Anfinsen was awarded a Nobel Prize in Chemistry
in 1972 for his work on the apparent one-to-one relationship
between the amino acid sequence of a protein and its three-
dimensional fold (1,2), giving rise to the classic paradigm:
‘‘one sequence, one fold.’’ However, serendipitous discov-
eries in the past few decades have led to the identification
of ‘‘metamorphic proteins’’ (3,4) that have the ability to
jump reversibly between two distinctly different folds under
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native conditions. These proteins are fundamentally
different from intrinsically disordered proteins (5), mor-
pheeins (6), and moonlighting proteins (7,8), which have
been studied for a long time. Typical conformational
changes in proteins often involve ‘‘shearing’’ or ‘‘hinge’’
behavior in which entire protein subunits or secondary
structure elements undergo relative motions without signif-
icantly altering the fold of the protein (9,10). In contrast, the
different folds/structures of a metamorphic protein are dis-
similar on a more fundamental level, often involving
changes such as the transformation of a whole a-helix into
b-strands (Fig. 1). In this article, we use significant change
in secondary structure as the key defining characteristic of
metamorphic proteins.
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FIGURE 1 Representative examples of metamorphic proteins with three-dimensional structures of both folds. The protein backbone is colored from

N-terminal (red) to C-terminal (blue). Secondary structure diagrams corresponding to the 3D structures are shown at the bottom of each panel. To see

this figure in color, go online.

Predicting Metamorphic Protein Sequences
Although the number of known examples of metamorphic
proteins such as IscU (11), RfaH (12,13), Selecase (14),
Mad2 (15,16), XCL1 (also called lymphotactin) (17),
CLIC1 (18), and KaiB (19,20) is relatively small, it is antic-
ipated to increase steadily and populate the ‘‘metamor-
phome.’’ In all these metamorphs, the transition from one
fold to another takes place in response to environmental
triggers like pH, temperature, salt concentrations, binding
partners, redox state, or oligomerization. Uncovering the
metamorphome is crucial as it is expected to have a transfor-
mative effect on long-held concepts of protein structure and
function. It could also lead to engineering of metamorphic
proteins, which are molecular switches, to act as sensors
of small molecules or local environmental changes.

Traditional x-ray crystallography techniques, which ac-
count for solving 90% of the protein structures in the Protein
Databank (PDB), are limited in their ability to identify
metamorphism in proteins. Although these methods did
identify several metamorphic proteins, they trap the protein
in a minimum free energy structure in a specific crystallo-
graphic environment, and thus, they usually do not reveal
the existence of alternate folds if the protein is metamor-
phic. A powerful method to detect protein metamorphism
is solution-state NMR. However, high-throughput screening
protein sequences for potential metamorphic behavior by
NMR is not feasible. A realistic approach would be to iden-
tify metamorphic candidates using computational ap-
proaches, which would allow experimental verification to
focus on a smaller set of candidate proteins.

A recent computational study from Porter and Looger
(21) identified 96-fold switching candidates in the PDB.
The study stated that two characteristics of metamorphic
proteins include discrepancies between experimentally
derived and computationally predicted secondary structures
and the occurrence of multiple independent subdomains that
each fold cooperatively. Using these two metrics, they esti-
mated that up to 4% of the proteins in the PDBmay be meta-
morphic, which suggests that this class of proteins appears
to be more common than those identified so far.

In this work, we propose a novel, to our knowledge, bi-
nary classifier for predicting protein metamorphism based
on the diversity index, which takes advantage of the uncer-
tainty in secondary structure prediction (SSP) methods. This
method has a unique advantage in that it can predict meta-
morphic behavior in a protein of interest purely based on
the amino acid sequence, without requiring a priori experi-
mental knowledge of the three-dimensional structure. The
classification method is trained using two reference data
sets consisting of �200 manually annotated monomorphic
and metamorphic sequences, respectively. We found a
robust performance of the diversity index-based classifier
with a Matthews correlation coefficient (MCC) of 0.355
(corresponding to �70% accuracy) that is largely insensi-
tive to changes in the parameterization and training data set.

The rest of this article is organized as follows. We first
give a brief overview of SSP methods as they provide the
essential inputs into our classifier. Next, we introduce the di-
versity index (DI), which measures the uncertainty of pre-
dicted secondary structure, and we outline how the DI is
used to classify a protein sequence as metamorphic or
monomorphic. This is followed by a description of the refer-
ence data sets containing known metamorphic and mono-
morphic sequences used to train our classifier. The
performance of the classifier is discussed in detail using
metrics, such as the MCC, true positive rates (TPRs), and
true negative rates (TNRs), and its robustness is tested using
randomized cross-validation, sensitivity analysis, and exam-
ining how performance varies with different input SSP
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programs. We include a discussion of ‘‘outlier’’ protein se-
quences that are consistently misclassified by the DI-based
model as well as how the performance depends on the
sequence database for position-specific scoring matrix
(PSSM) generation, an important auxiliary input for the
SSP programs. The article concludes with some promising
future directions.
METHODS

Theory

SSP

Secondary structure (SS) is a property of amino acid residues within a pro-

tein structure that describes its local intrachain three-dimensional structure.

Under the well-known DSSP system (22), secondary structure may be clas-

sified into eight states, which can be further reduced down to three: a-helix

(H), b-strand (E), and random coil (C). In the years since the introduction of

SS classification for known protein structures, several data-driven compu-

tational methods have emerged for SSP using only primary structure infor-

mation, i.e., the amino acid sequence. Today, SSP is a vital part of the

modern toolkit for protein structure prediction and design.

SSP methods can be understood in the conceptual framework of ma-

chine learning. The protein sequence is first processed into a feature vector

consisting of information with structural relevance. Such features may

include a PSSM, which estimates the probability distribution of amino

acid residues at each position in the sequence, and is computed by per-

forming sequence alignments to a sequence database (23) using programs

such as PSI-BLAST (24). The feature vector is input into a neural network

model, which has significant flexibility in its internal architecture, and pro-

vides three outputs for each amino acid representing the probabilities of a-

helix (H), b-strand (E), and random coil (C), adding up to one. The param-

eters of the neural network are trained to reproduce known secondary

structures from widely available structural data sets. The accuracy of

three-state SSP for modern methods has been reported to be as high as

82–84% (25).

In this article, four widely used SSP programs were applied to predict the

secondary structure of every sequence in our data sets, namely Psipred (26),

SPIDER2 (27), SPIDER3 (28), and Porter 5.0, denoted here as Porter5 (29).

Psipred, developed in 1999, introduced the idea of using the PSSM gener-

ated by PSI-BLAST as input to a feed-forward neural network for SSP.

SPIDER2 uses a deep neural network that incorporates the PSSM from

PSI-BLAST along with amino acid physicochemical properties (30) to pre-

dict secondary structures and main chain dihedral angles. SPIDER3 is an

updated version of SPIDER2 that incorporates hidden Markov model

sequence profiles generated by the HHBlits program (31) as input to a bidi-

rectional recurrent neural network architecture, effectively allowing the

entire sequence to calculate SS prediction at each position instead of a

sliding window as in SPIDER2. Porter5 is the latest version of a series of

SSP programs and uses HHBlits-generated HMM sequence profiles and

PSI-BLAST-generated PSSMs as input. In this article, we used the

UniProt90_2019_01 sequence database as the input to PSI-BLAST for

PSSM generation, and the Uniclust30_2018_08 database was used as input

for HHBlits. These published sequence alignment databases are distinct

from the metamorphic and monomorphic reference data sets that were

compiled as part of this work.

Metamorphic proteins and diversity index

Metamorphic proteins can reversibly adopt multiple folded conformations

for the same amino acid sequence under native conditions (3,4). Moreover,

representative examples of metamorphic proteins are characterized by sig-

nificant differences in secondary structure between folds (Fig. 1), which is
1382 Biophysical Journal 119, 1380–1390, October 6, 2020
a distinct feature from more typical kinds of conformational change that

generally preserve secondary structure, as described in the Introduction.

Because these metamorphic proteins possess multiple stable folds with

differences in secondary structure, our central hypothesis is that metamor-

phic protein sequences are able to ‘‘confuse’’ SSP programs. According to

this hypothesis, we defined one descriptor, the diversity index (DI):

DI ¼ �
PðEÞ2 þ PðHÞ2 þ PðCÞ2��1

; (1)

where P(E), P(H), and P(C) are output quantities from the SSP program

representing the probabilities of a-helix, b-strand, and coil, respectively,

for a single residue in the sequence. The DI for a residue is the reciprocal

of the well-known Herfindahl and Simpson indices (32) for quantifying di-

versity in a probability distribution, and its value ranges from 1.0 (100%

probability of one output, 0% for the other two) to 3.0 (equal probability

of all three outputs). The value of the DI is also equivalent to the exponen-

tiated Shannon entropy (33) in the above limiting cases but takes on

slightly different values for other distributions. High values of the DI indi-

cate greater uncertainty in SSP. Because metamorphic proteins tend to

have contiguous portions of the sequence (or even the whole protein)

capable of undergoing changes in secondary structure, we also hypothe-

sized that the DI of metamorphic protein sequences are elevated in contig-

uous regions of the sequence. Therefore, we consider the maximum value

of a moving average of the DI over the sequence as the main criterion to

predict metamorphic behavior in a protein sequence. In other words, a

sequence will be classified as metamorphic if the following criterion is

satisfied:

max

(
1

CR

Xj <CR

j¼ 0

DIiþj

)L�CRþ1

i¼ 1

>DIthre; (2)

where the CR ‘‘number of consecutive residues’’ and DIthre ‘‘diversity index

threshold’’ are adjustable parameters. This binary classifier needs to be

trained on reference or ‘‘manually annotated’’ data sets consisting of known

metamorphic and known monomorphic (i.e., onefold) sequences. We will

describe the construction of these data sets in the following sections.
Data Set Setup

Construction of the metamorphic reference data set

In 2018, Porter and Looger published an article listing 192 metamorphic

protein structures (96 pairs) (21) in which most pairs have very high

sequence similarity to one another (between 90 and 100%). In eight cases,

both metamorphic protein structures were found as different chains with

identical sequences in a single deposited assembly (e.g., PDB ID:

5C1V). Our metamorphic reference data set, listed in Table S1, makes

the following revisions to the listing in (21). Among the original set of

192 structures, one protein is no longer available from the database

(2A01). We also removed proteins in which the fold switching region is

contained within 20 residues of the N- and C-termini (4ZRB, containing

two structures) or if the sequence length is shorter than 40 residues

(4FU4, 4G0D, 5K5G, and 2KB8); this is because our classifier requires

taking a moving average of the diversity index, requiring a sequence

that is longer than the largest window size (>15 residues) plus the number

of the removed terminal residues (>5 � 2 residues). In total, eight proteins

were removed from the list for the reasons above. We also added several

proteins to the list, including the designed sequence pair GA/GB from pro-

tein G (34) that was excluded from (21) (PDB ID: 2LHC and 2LHD) and

15 other possible metamorphic proteins that have experimental evidence

for metamorphism but one solved structure, such as 2LSH. Therefore,

our reference metamorphic data set contains 192 � 8 þ 15 þ 2 ¼ 201

metamorphic protein structures in total.
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Construction of the monomorphic reference data set

Our classification model for predicting protein metamorphism needs to be

trained on proteins with known metamorphic behavior, as well as those with

known single-fold (i.e., monomorphic) behavior. Although it is widely

assumed that the PDB contains mostly monomorphic proteins, it is likely

that a significant portion exhibits as yet undiscovered metamorphic

behavior. Therefore, we queried the PDB to obtain a set of protein structures

that are highly likely to be monomorphic based on the following set of

filtering criteria, which were adjusted to produce a data set with a similar

size as the metamorphic set: 1) the structure should be reported at least

10 years ago and has a good quality structure in the sense that x-ray struc-

tures with resolution >2.2 �A were filtered out; 2) there must be >30 pub-

lished structures with at least 50% sequence similarity with the structure of

interest; and 3) the sequence length is >40 and <250 residues to meet the

criteria of having a well-folded core while staying within the typical

sequence lengths of globular proteins. Each structure found in the above

manner is termed ‘‘parent protein,’’ and structures with high sequence sim-

ilarity found in step (2) above are termed ‘‘child proteins.’’

A total of 1387 ‘‘parent protein’’ structures with a maximum sequence

similarity of 70% and more than 65,000 ‘‘child protein’’ structures were

downloaded along with their abstracts from the Research Collaboratory

for Structural Bioinformatics Protein Databank (RCSB PDB) web server

using an automated crawler written in Python that uses the scrapy package.

Two filtering rules were imposed to maximize the probability that a ‘‘parent

protein’’ is monomorphic:

1) The root mean-square deviation (RMSD) values were calculated for all

pairs of structures after sequence alignment for a ‘‘parent protein’’ and

all of its ‘‘children.’’ The structure was excluded from the data set if

any of the pairwise RMSD values exceeded 2.4 Å.
2) The mismatch in secondary structure (SS) was calculated for all pairs of

structures after sequence alignment with a ‘‘parent protein’’ and all of its

‘‘children.’’ A positional mismatch score is calculated by summation

over aligned residues in a window of 30 residues in length, where ‘‘2’’

was assigned if one sequence is H and the other is E, and ‘‘1’’ was as-

signed if one sequence is C and the other is either E or H, and then taking

the maximum value over all window positions. The structure was

excluded from the data set if the SS mismatch score between any pair

of sequences exceeded 9.

Finally, the abstracts of the corresponding publications were checked for

keywords such as ‘‘fold switching,’’ ‘‘metamorphic,’’ ‘‘two folds,’’ and other

synonyms; if the abstract indicated possible metamorphic behavior, then it

was excluded from this data set as well. This procedure resulted in a total of

136 likely monomorphic proteins (Table S2).

An example of a metamorphic protein (KaiB) and a monomorphic pro-

tein (1AB9) from our reference data sets is shown in Fig. 2. The highest

RMSD value in the KaiB (typical example of metamorphic proteins) cluster

exceeds 7.0 Å, and many pairs of sequences exhibit a secondary structure

mismatch of 23 or greater. On the contrary, both the RMSD values and

SS score are consistently low for the monomorphic protein 1AB9.
RESULTS AND DISCUSSION

Behavior of the diversity index (DI)

According to Eq. 1, the range of the diversity index (DI) is
from 1 to 3, with larger values indicating greater uncertainty
of SS prediction. Fig. 3 plots the SS and DI from the
SPIDER2 program for a well-known metamorphic sequence
FIGURE 2 RMSD (a and c) and SS (b and d)

score of KaiB and 1AB9, respectively. The highest

RMSD value and highest SS score of the KaiB

cluster is much larger than those of the 1AB9 clus-

ter. To see this figure in color, go online.
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FIGURE 3 SSP results for KaiB (a) and ubiquitin (b). Top: experimentally derived SS of both KaiB structures (PDB ID: 2QKE and 5JYT, left) and ubiq-

uitin (1UBQ, right). Middle panel: stacked bar plots show predicted SS probabilities at each position in the sequence from SPIDER2 (red, strand (E); blue,

helix (H); and gray, C). Bottom panel: diversity indices for each residue position in the sequence (gray), with a moving average, window size of 14 (green),

and DI threshold, DIthre, for metamorphic behavior (blue dotted line). The DI takes on higher values when the predicted SS is more evenly distributed be-

tween H, C, and E, indicating greater uncertainty. For KaiB, the higher DI regions coincide with the experimentally known metamorphic regions (19). To see

this figure in color, go online.
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(KaiB, left panel) and monomorphic sequence (ubiquitin,
right panel) along with the experimentally derived second-
ary structure(s). As shown in the left panel, the DI of the
KaiB sequence has several regions of elevated values in
the metamorphic region that spans positions 50–90. On
the other hand, the DI of ubiquitin is relatively low for the
whole sequence, with small jumps at the boundaries of
different secondary structure domains that are smoothed
out by taking the moving average. This example illustrates
how diversity indices may be used to predict metamorphic
behavior in proteins when the folds exhibit different second-
ary structure in the metamorphic regions.
Diversity index-based classifier performance

The performance of our model is measured using the MCC,
a well-established measure of the quality of binary classifi-
cations. For each combination of our parameters CR and
DIthre, the MCC is computed from a matrix of true positives
(TP), false positives (FP), true negatives (TN), and false
negatives (FN), called a confusion matrix (35):

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞp :

(3)

The value of the MCC ranges from �1 to þ1, where
random classification gives a value of 0, perfect classifica-
tion gives þ1, and ‘‘perfectly wrong’’ classification
gives �1 (equivalent to perfect classification if all predic-
tions are reversed). For context, a recent review of machine
learning methods for predicting disease in individuals re-
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ports MCC values ranging from �0.24 to þ0.55 (36). An
advantage of MCC is that the positive and negative data
sets play equally important roles, even if they are imbal-
anced in size. We also report simpler measures of TPR,
TNR, and accuracy, defined as:

TPR ¼ TP

TPþ FN
TNR ¼ TN

TN þ FP

ACC ¼ TPþ TN

TPþ TN þ FPþ FN
;

(4)

which range from 0 to 1, and random classification gives
0.5. The accuracy is intuitive because it is simply the ratio
of correct predictions to the total number of data points,
but we do not use it in training because it can hide the effects
of imbalanced performance for positive and negative cases.

Generally speaking, larger values of CR correspond to
increased window size and tend to decrease the maximum
value of the moving average. Larger values of DIthre also
tend to decrease the probability that a sequence is classified
as metamorphic. Thus, for increasing values of CR and
DIthre, the true negative and false negative rates both in-
crease. To get a better understanding into the behavior of
our model, we plotted heat maps of the MCC in our two-
dimensional parameter space shown in Fig. 4. Herein, we
consider possible values of CR ranging from 6 to 15 and
possible values of DIthre ranging from 1.4 to 2.6 with a
step size of 0.05.

The sensitivity of our model was tested by cross-valida-
tion. In general, cross-validation involves partitioning the
data set into training set and test set and verifying the model
obtained from the training set by making predictions for the



FIGURE 4 MCC heat maps for the diversity index-based classifier using predicted secondary structures from four programs, namely (a) Psipred, (b)

SPIDER2, (c) SPIDER3, and (d) Porter5. The color map (blue < white < red) corresponds to MCC values computed for the full reference data set.

Each black dot indicates the optimized parameter value for a randomly selected training set (�84.3% of the full data set), with numbers indicating how

many times each optimum was found. To see this figure in color, go online.
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test set. Here, we applied six-fold cross-validation. The
complete data set including monomorphic and metamorphic
proteins was randomly shuffled and split into six even-sized
chunks. In each of the six trials, five selected chunks were
treated as the training set and the remaining chunk as the
test set. The parameters were determined by maximizing
the MCC for the training set and then used to calculate
the MCC for the test set.

Fig. 4 and Table 1 show the main results for our DI-based
classification using four SSP programs. Similar levels of
performance for the training set were obtained using all
four SSP programs as input to the DI-based classification.
Among these methods, SPIDER2 had the highest average
MCC value of 0.418 for the training set (Table 1), which
was slightly higher than that of Porter5 (0.393), SPIDER3
(0.401), and Psipred (0.311); the differences were rather
small and within the standard errors from randomized
cross-validation trials. The parameters that maximized the
MCC tended to appear in the middle of the parameter space,
with significant regions of the parameter space exhibiting
only minor variations from the optimum. For example, in
the case of SPIDER2, the largest MCC value among all
the trials was around CR �15 and DIthre �2.1.
TABLE 1 The MCC Results from Four Different SSP

Programs, Including the Training Set Results and the Test Set

Results

MCC Psipred SPIDER2 SPIDER3 Porter5

Training set 0.311 (0.018) 0.417 (0.015) 0.401 (0.017) 0.393 (0.035)

Test set 0.255 (0.091) 0.355 (0.104) 0.327 (0.124) 0.272 (0.096)

Numbers in parentheses are sample SDs over cross-validation trials.
In terms of the test set, Porter5 and Psipred performed
similarly with MCC values of 0.25–0.28, with differences
being within the standard errors from randomized cross-
validation trials. SPIDER2 had the highest average MCC
value (0.355) for the test set. The small difference between
the test set and training set MCCs and the consistency of our
results across several models indicate that the DI-based clas-
sifier is a robust method for predicting metamorphic
behavior. SPIDER3 showed moderate performance in the
test set compared with the other three methods, with a
MCC of 0.332. Fig. 4 b also shows that SPIDER2 had a
broader range of parameter space with near-optimal perfor-
mance as compared to Psipred, SPIDER3, and Porter5. The
training and test results overall indicate that higher SSP ac-
curacy does not directly translate to better performance in
metamorphic protein classification.

Although these methods had similar MCC values, their
accuracy in terms of correctly predicting TP and TN showed
much greater variations. According to the data shown in
Table 2, the TPR is lower than the TNR in all four methods
for the optimum parameters that maximized the MCC.
Among these methods, SPIDER3 had by far the highest
TNR value (0.92) and lowest TPR value (0.42). The other
TABLE 2 TPR, TNR, and Accuracy of Test Set for Four

Different SSP Programs

Measure Psipred SPIDER2 SPIDER3 Porter5

TPR 0.598 (0.113) 0.633 (0.087) 0.411 (0.017) 0.581 (0.018)

TNR 0.707 (0.071) 0.782 (0.064) 0.918 (0.023) 0.763 (0.062)

Accuracy 0.649 (0.021) 0.698 (0.015) 0.633 (0.016) 0.645 (0.027)

Numbers in parentheses are sample SDs over cross-validation trials.
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three methods had similar TPR ranging from 0.59 to 0.66
and TNR ranging from 0.78 to 0.83, which are within the
limits of statistical errors from our cross-validation studies.
We presumed that the large TNR values of SPIDER3 comes
from overall low values of the calculated diversity index,
which possibly originates from higher SS prediction confi-
dence levels as compared to other methods. We thus recom-
mend SPIDER2 as the input method of choice for
metamorphic protein classification because of its consis-
tently high MCC value for both training and test sets,
balanced TPR and TNR, and wide regions of parameter
space with near-optimal performance.
FIGURE 5 Two-parameter classification using diversity indices from

SPIDER2 and Porter5. Here, the TP (metamorphic proteins in the reference

data set correctly classified as metamorphic) are represented by red filled

circles, and the false negatives (metamorphic proteins in the reference

data set incorrectly classified as monomorphic) are represented by red

open circles. The blue filled circles and blue open circles represent TN

(monomorphic proteins in the reference data set correctly classified as

monomorphic) and false positives (monomorphic proteins in the reference

data set incorrectly classified as metamorphic), respectively. To see this

figure in color, go online.
Comparison with other methods

There currently exist a few methods in the literature for pre-
dicting metamorphic behavior in proteins (21,33). To our
knowledge, all existing methods require the knowledge of
either the protein’s empirical three-dimensional structure
or secondary structure. Porter et al. hypothesized that meta-
morphic proteins possess at least one domain with a fold that
is largely independent of the rest of the sequence and pro-
posed a method to predict metamorphic behavior based on
the prediction of independent folding domains (21,37).
This method requires the protein’s experimentally deter-
mined three-dimensional structure, and thus, its predictions
are based on existing structural knowledge.

More recently, Porter et al. and co-workers reported that
metamorphic proteins have lower SSP accuracy than mono-
morphic proteins or fragments (38), which is similar to the
ideas in our current work; however, the method they pro-
posed requires prior knowledge of experimental secondary
structure. A major differentiating feature of the diversity in-
dex-based classification method presented here is that it re-
quires no experimental data for the sequence of interest.
Thus, this method could be used to make predictions of
metamorphism in protein sequences in which there is no ex-
isting structural data.
Classification using multiple diversity indices

We also examined the possibility of obtaining an
improved classification model based on a linear combina-
tion of DIs obtained from two SSP programs, essentially
increasing the number of descriptors to two. The discrim-
inant parameters (i.e., slope and intercept of the line) were
optimized by maximizing the MCC (35). Using a linear
combination of the SPIDER2 DI and the Porter5 DI, we
found the MCC value of the optimal model increases to
0.45. Fig. 5 plots the discriminant line and the descriptor
values for each protein as a scatter plot. The diagonal
shape of the distribution indicates a high degree of corre-
lation between the two diversity indices (R2 ¼ 0.41), and
most of the metamorphic proteins identified as TP are
located in the top-right corner of the figure. We found a
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similar performance using some alternate approaches,
for example an ‘‘inconsistency index’’ to predict metamor-
phism using the level of disagreement between two SSP
programs (Fig. S1; (39)) and principal component analysis
on the results of multiple SSP programs followed by
K-means clustering (Fig. S2). These methods all yielded
results with MCC values within 0.1 of the basic method
using a single diversity index.

However, our analysis also revealed some false negatives
(FN, open red circles) in the lower left of Fig. 5; these are
metamorphic proteins in our reference data set but have
very low diversity indices and contradict our rationale for
the DI-based classifier. The same applies for false positives
(FP, open blue circles) in the upper right of the Fig. 5 as
these are monomorphic proteins in the reference data set
with high diversity indices. In the following section, we pro-
vide a rationale to explain these outliers.
Analysis of outliers in diversity index-based
classification

Several proteins are consistently misclassified by the DI
method using the predicted SS from all four programs.
There are 22 metamorphic proteins in our reference data
set that are consistently misclassified as monomorphic
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proteins (false negatives) and 14 monomorphic proteins
consistently misclassified as metamorphic proteins (false
positives).

We examined the 22 ‘‘persistent’’ false negatives, i.e.,
metamorphic proteins from our reference data set that are
consistently misclassified as monomorphic, and generally
found that their two folds did not satisfy our initial criterion
of having significantly different secondary structures and
instead feature other kinds of conformational differences,
which we discuss in the following examples. The three-
dimensional structures of the false negatives are shown in
Fig. S3.

1) 2LQW (40) and 2BZY (41): A closer examination re-
veals that these two structures have very similar second-
ary structures in spite of different folds. As shown in
Fig. S3, 2LQW is a key signaling protein that exists as
a monomer, whereas 2BZY is a partial structure of a
CrkL homodimer protein, in which the existing part
has similar SS to 2LQW. Moreover, the truncated CrkL
monomer protein (PDB ID: 2BZX) has a highly similar
secondary structure to 2BZY. The high similarity in sec-
ondary structure is consistent with the classification as-
signed by our method, which is based on differences in
secondary structure between folds.

2) 2NNT (42) and 2MWF (43): 2NNT is a tetrameric amy-
loid protofilament that forms an extended b-sheet be-
tween multiple chains, whereas 2MWF is a mutant
monomer that forms a b-sheet within the residues in
one chain. Again, the highly similar secondary structure
in both folds is consistent with the classification assigned
by our method.

3) 4HDD (44) and 2LEP (45): The structures in this pair are
similar in terms of secondary structure but have a large
RMSD. 4HDD is a homodimer in which a b-sheet is
formed between chains, whereas 2LEP uses the same
domain to form a b-sheet within one chain.

4) 1G2C (46) is a truncated protein whose SS closely
matches with the corresponding residues in 5C6B,
which is a full structure. Strikingly, the other protein
5C6B (40), which has a similar sequence to 1G2C, is
correctly classified by SPIDER2 and Porter5 as a meta-
morphic protein. The high DI domain of 5C6B (resi-
due 270–295) was not part of the 1G2C structure,
which indicates the incorrect classification of 1G2C
might be solely because of the truncation of the input
sequence.

5) 4XWS (47) and 4Y0M (48): Upon examination of the
structures, we think this structure pair had been incor-
rectly included in our reference metamorphic data set
as these two structures are highly similar in terms of sec-
ondary structure as well as three-dimensional structure
(RMSD: 1.561 Å). In fact, the text of (47) states that
the metamorphic region of the protein could not be
solved by x-ray crystallography.
Within the 14 persistent false positives, i.e., monomor-
phic proteins from our reference data set that are consis-
tently classified as metamorphic, we found the following
examples, with 3D structures shown in Fig. S4:

1) 2UU8 (49) is a concanavalin A protein, and its DI value
is relatively high in all the SSP programs, particularly in
SPIDER2 (�2.5). This structure possesses many short
adjacent domains with different secondary structures,
which leads to uncertainty in the SSP programs. Also,
b-sheets are dominant in the SS of 2UU8, and we
observed that the outermost strand of the b-sheet has
a general tendency to have high uncertainty from SSP
programs.

2) 3SEB (50) is a protein with several short SS domains
(including a-helices and b-sheets), leading to the high
DI values for these domains, similar to the example
above. More than half of the false positives follow the
same trend, indicating that our DI-based classifier is
biased to misclassify protein sequences that are mono-
morphic but intrinsically difficult for SSP programs
because of having many short subdomains with distinct
SS or outermost b-strand among several (anti-)parallel
b-sheet strands.

3) 2JE7 (51), a recombinant protein made from the seed
lectins of two Dioclea species, has the same situation
that the outermost strand of b-sheets, and the short adja-
cent SS segments have the highest DI values. However,
this protein is known to form either a dimer or a
tetramer depending on the pH value, and environ-
mental-mediated changes in stoichiometry are a known
driving force of protein metamorphism. Although there
exists no direct evidence of SS change in this dimer-
tetramer equilibrium process, it is possible that this
process is associated with metamorphism not yet
discovered.

4) 3CHB is another monomorphic protein whose DIs are
very large in all the SSP programs. Unlike the other
two false-positive proteins above, each subunit of the ho-
mopentameric 3CHB (52) has a long a-helix and six me-
dium-length b-strands. Another short-length a-helix is
located at the N-terminus. According to the SPIDER2
prediction, three out of six b-strands have relatively large
DIs, resulting in a region with a high average DI value.
So far, we do not have a good explanation for the reason
of this false positive. One possibility is that other pro-
teins in the PDB have highly similar sequences to these
high DI b-strands but have different SS.

We note that it is possible for our reference monomorphic
data set to include proteins that are actually metamorphic,
despite our efforts to minimize this occurrence. This is
because our selection of monomorphic proteins was based
on the analysis of known structures in the PDB, which is
missing alternate folds or structures that have not yet been
discovered or deposited.
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Dependence of results on sequence database

The performance of SSP programs relies on the nonredun-
dant sequence database that is used to compute the PSSM.
Fig. 6 shows the differences in classification performance
when SPIDER2 is used as the SSP program for different
choices of the nonredundant sequence database. The Uni-
ref-50, Uniref-90, and Uniref-100 databases have progres-
sively larger numbers of sequences and sequence identities
among pairs of sequences. Fig. 6 shows that Uniref-50 has
a markedly lower performance for our classifier compared
to Uniref-90 and Uniref-100, and it is currently unclear
whether the poor classification performance is due to the
smaller size of the sequence data set or the more stringent
threshold on sequence identity. Surprisingly, the modified
nonredundant sequence data set (53) from I-TASSER
(PSSpred) gives a very high MCC value (0.457), even
though it was released in 2014 and has not been continually
updated like the other three. Thus, the DI-based classifica-
tion performance depends on the sequence database in a
nontrivial way and does not necessarily yield improved re-
sults for updated database versions.
CONCLUSIONS

In this article, we described a diversity index-based classifi-
cation model to predict metamorphic behavior in proteins
solely based on the protein sequence. Our model was trained
on a reference data set consisting of 136 known monomor-
phic proteins and 201 known metamorphic proteins.
Although the main purpose of SSP programs is to predict
secondary structure, our results indicate that the ‘‘byprod-
ucts’’ of SSP, namely the alternate SS probabilities and the
FIGURE 6 The different MCC values calculated based on (a) 50% nonredun

nonredundant sequence data set, and (d) PSSpred nonredundant sequence data
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derived diversity index, can play a key role for predicting
metamorphism in proteins. Among the four popular SSP
programs, SPIDER2 has the overall best performance and
robustness in classifying proteins as monomorphic versus
metamorphic. Further improvements in performance may
be obtained by comparing the output of multiple SSP pro-
grams. Because all four SSP programs give similar MCC
values when used in classification to within�10%, we think
further improvements in predicting protein metamorphism
will require SSP methods that focus more on accurate quan-
tification of uncertainty rather than yielding the best fit to
experimental data. There is also potential for improvement
in curating the annotated metamorphic and likely monomor-
phic data sets; for example, the thermodynamic stability of
the native state could be used as a criterion for a likely
monomorphic protein (37).

Our examination of false positives and false negatives il-
lustrates both the predictive potential and the limitations of
the DI-based approach. In terms of false positives, we found
some indications of undiscovered metamorphic behavior in
the monomorphic data set, possibly driven by pH-dependent
changes in stoichiometry. On the other hand, the false neg-
atives highlight fold switching behavior in proteins that is
not well described by significant changes in secondary
structure. This indicates that metrics going beyond SSP
may be needed to predict certain kinds of protein metamor-
phism, which is a promising direction of future research.
SUPPORTING MATERIAL
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