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ABSTRACT: A primary goal of metabolomics studies is to fully characterize the small-
molecule composition of complex biological and environmental samples. However, despite
advances in analytical technologies over the past two decades, the majority of small
molecules in complex samples are not readily identifiable due to the immense structural and
chemical diversity present within the metabolome. Current gold-standard identification
methods rely on reference libraries built using authentic chemical materials (“standards”),
which are not available for most molecules. Computational quantum chemistry methods,
which can be used to calculate chemical properties that are then measured by analytical
platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for
“standards-free” identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications
where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion
mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best
practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this
review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of
reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
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1. INTRODUCTION

1.1. Growth and Impact of the Omics

Current basic and applied research of living systems occurs
amid several rapidly evolving scientific paradigms, omics (e.g.,
genomics, transcriptomics, proteomics, and metabolomics),1−7

systems biology,8−10 and synthetic biology,11−13 that influence
the researcher to look broadly at the holistic system or
organism under study. Propelled by key developments of the
Information Age, these scientific paradigms encourage
scientists to aim for the comprehensive characterization and
quantification of the relevant functional units of a cell, organ,
organism, or entire system (e.g., soil) and to develop
computational models that capture and explain the interactions
between and among these units that influence the overall
system (Figure 1). At the lowest level, the units that comprise
those systems are genes, transcripts, proteins, and metabolites;
these units are responsible for the mechanisms by which
interactions occur and lead to higher-level system functions
and properties. Here, we use “metabolites” to refer not only to
small molecules involved in primary metabolism but also to
secondary (or “specialized”) metabolites. Secondary metabo-
lites are typically defined as molecules that are not directly
involved in organism growth, development, or reproduc-
tion14−16 but instead are produced as a consequence of
interactions with other organisms and the environment (e.g.,
signaling, defense/deterrence, and larger biomolecule degra-
dation).17−20 Related small molecules that are equally
important include polar and nonpolar lipids and anthropogenic
molecules, such as pesticides, fertilizers, and pharmaceutical
products. Similarly, glycans are polysaccharide moieties often
bound to proteins on cell surfaces important for cell
recognition but also may be bound to lipids or occur freely
after enzymatic release.
The measurement of each of the classes of biomolecules that

comprise low-level functional units has been enabled by their
respective omics paradigm, genomics, transcriptomics, proteo-
mics, metabolomics, lipidomics, and glycomics (Figure 2), and
the numbers of publications including data from such studies
has steadily increased over the last two decades (Figure 3).
Major funding agencies have increasingly recognized the high
data yield of omics approaches and their potential to generate
new biological and biomedical hypotheses. Many research
studies today include one or more types of omics, and many
research consortia, centers, and cores focus on multiomics
approaches to studying health and disease or provide omics

measurement services to clients. Indeed, the U.S. National
Institutes of Health (NIH) committed >$200 M in 2019−
2020 to fund 266 grants or subgrants that include some aspect
of omics data collection or analysis in their proposed research
(NIH RePORTER search; keyword “omic” and limited to
project abstracts).
Omics studies to date have yielded important discoveries of

the roles of functional biomolecules or of the genes and
pathways that encode or regulate them. For example, in the
early 1990s, genomics-based research led to the discovery of
two cancer-susceptibility genes, BRCA1 and BRCA2,21−25 that
have revolutionized breast cancer screening. Women who
inherit certain mutations in BRCA1 or BRCA2 have 72% and
69% risk, respectively, of developing breast cancer by age 80.26

Mutations in these genes also increase the risk of ovarian
cancer.26

In 2004, Zhang and colleagues used a proteomics approach
to analyze sera from over 500 individuals with various ovarian
cancers and benign pelvic masses in a five-laboratory, case-
control study and using a robust study design.27 A number of
candidate protein biomarkers were identified, immunoassays
were developed for subsequent validation in independent
cohorts, and the results indicated that the marker panel could
discriminate between benign and malignant ovarian tumors.
The research group then worked collaboratively with the U.S.
Food and Drug Administration (FDA) to develop an approved
assay, and the FDA provided clearance in 2009. The final assay,
OVA1, provides >90% sensitivity and 90% specificity for
women with an ovarian tumor and for whom surgery is
planned when combined with other data. The OVA1 assay is
now commercially available from ASPiRA Laboratories to
detect ovarian cancer risk in women with planned surgery for a
pelvic mass.
Perhaps the most important impact of metabolomics to date

is the contribution of early generation approaches to the
identification of and monitoring for inborn errors of
metabolism,30,31 which are typically characterized by accumu-
lation of high levels of key metabolites in blood and urine of
those afflicted. The first disease identified through newborn
screening was phenylketonuria (PKU), which is diagnosed in
part based on high levels of circulating phenylalanine due to
mutations in the gene encoding the hepatic enzyme phenyl-
alanine hydroxylase.32 If undetected or left untreated, PKU can
lead to significant intellectual disability, among other ail-
ments.33 Today, every state in the U.S. supports screening
programs for a wide range of inborn errors of metabolism; for
example, Washington State currently tests for 36 disorders, and
California state law now requires screening for 80 congenital
and genetic disorders in all newborns.

1.2. High Throughput Omics Measurements

The analytical tools used for comprehensive omics measure-
ments vary according to the biochemical nature of the
molecules involved. The foundational knowledge of the
chemical composition and molecular structure of DNA34−36

and the molecular biology associated with the molecule37−39

are the primary elements that have enabled present-day
technology for rapid, comprehensive, and cost-effective
determination of DNA composition and order (“sequencing”).
DNA is a relatively simple biomolecule, consisting of two
complementary, polymeric strands comprising repeating units
of just four nucleotide bases. A variety of next-generation
sequencing technologies are available today; however, at the
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highest level, all genomic sequencing begins with isolation of
DNA from a sample, the shearing of the double-stranded
molecule to a single strand, and the subsequent elongation of a
short complementary primer sequence through sequential
addition of free nucleotides by the action of the enzyme DNA

polymerase.3 The sequential incorporation of free nucleotides
into the growing DNA chain is monitored by fluorescence
detection of fluorophores bound to the nucleotides. The
inherent specificities of DNA polymerase, hydrogen bonding
between complementary pyrimidine and purine nucleotides,

Figure 1. Systems biology paradigm. Systems biology studies employ omics approaches to comprehensively identify and quantify the functional
units of the system under study. One or more omics approach is used to perform measurements of genes, transcripts, proteins, and metabolites, the
data are analyzed and integrated, and computational models are used to interpret the results, often with the goal of obtaining a predictive
understanding of the system to then manipulate it in a directed fashion. Reproduced with permission from ref 8. Copyright 2007 AAAS.

Figure 2. Omics. The approaches (and philosophies) for comprehensively identifying and quantifying genes, transcripts, proteins, and metabolites
are termed genomics, transcriptomics, proteomics, and metabolomics, respectively. Lipidomics is the subdiscipline of metabolomics that addresses
the measurement of polar and nonpolar lipids. Glycomics is the omics devoted to the comprehensive measurement of free and protein-bound
glycans (as well as glycolipids, i.e., lipid-bound glycans). The exposome includes all endogenous and exogenous exposures and unites
transcriptomics, proteomics, metabolomics, lipidomics, and glycomics and includes measurement of anthropogenic molecules. Modified with
permission from ref 28 under the Attribution-NonCommercial-No Derivatives 4.0 Unported License (http://creativecommons.org/licenses/by-nc-
nd/4.0). Modified with permission from ref 29. Copyright 2016 Springer Nature.
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and nucleotide-bound fluorophores, combined with the
accuracy of current sequencing data processing algorithms,
all contribute to genomic sequencing results with very low
error rates (typically less than 1%). The massive parallelization
available in modern sequencing instruments allows for nearly
complete coverage of a genome in a relatively short time and at
low cost. Technologies for sequencing of RNA (i.e., tran-
scriptomics) are similar.
Proteins, like DNA and RNA, are polymers of repeating

units of 20 amino acids. Unlike DNA and RNA, no molecular
biology can be leveraged to determine their sequence in such a
complete, accurate, and cost-effective manner. Instead,
proteins are normally “sequenced” in proteomics analyses
using tandem mass spectrometry (MS/MS). In the shotgun
proteomics paradigm, proteins are digested into their
constituent peptides using the enzyme trypsin, which cleaves
on the carboxyl side of arginine and lysine residues. This
process generates peptides of manageable size that are
amenable to separation using liquid chromatography (LC),
ionization using electrospray (ESI), and gas-phase fragmenta-
tion using, for example, collision-induced dissociation (CID).1

During CID, peptides typically dissociate at the peptide bond,
producing fragmentation spectra with constituent m/z
corresponding to different sizes of the peptide in question,
minus one or more constituent amino acids in sequence (i.e.,
so-called “ion ladders”). Various software tools have been
developed for in silico prediction of peptide fragmentation
spectra.40,41 These software tools essentially generate compre-
hensive reference libraries of predicted peptide spectra and for
every protein suspected of being present in the sample. The
predicted fragmentation spectra generated by these algorithms
are based on peptides derived in silico from reference protein
sequences, and the reference protein sequences are in turn
generated from the genome of an organism of interest, thus

showing the intimate relationship between genomics and
proteomics. Because of comparatively higher errors in peptide
identification using MS-based proteomics (compared to gene
sequencing), approaches were developed to provide a measure
of confidence in the results from proteomics data processing
tools.42 The most commonly implemented approach for
estimating and controlling the error rate in proteomics data
processing is the target−decoy database approach,43 which
allows researchers to control the degree of false identifications
(i.e., the false discovery rate) by setting minimum peptide
identification score thresholds that both maximize the numbers
of confidently identified peptides while minimizing the
numbers of incorrect identifications.

1.3. Major Roadblocks in Metabolomics

Metabolomics is the least mature of the omics. Although the
average molecular formula composition of a metabolite does
not differ significantly from that of a peptide,44 metabolite
structures are not constrained to a template like DNA, RNA,
and proteins. Their chemical diversity is governed only by what
constitutes a thermodynamically stable structure (>1033−10160
possible structures for molecules, depending on the number of
atoms and elements considered45,46). Moreover, the concen-
trations of metabolites vary by over 10 orders of magnitude.
Because of this immense chemical diversity and consequent
broad range of physicochemical properties and abundances,
multiple analytical technologies are employed in comprehen-
sive metabolomics studies to achieve high coverage of the
metabolome. The chemical diversity of the metabolome has
also precluded the development of analytical paradigms
providing high-throughput (i.e., automated) and accurate
identifications of metabolites with associated estimates of
false discovery.
For novel molecules, using advanced ultrahigh resolution

MS, the chemical formula can be readily determined with high

Figure 3. Omics publication trends 1999−2019. The numbers of publications including genomics, transcriptomics, proteomics, metabolomics,
lipidomics, and glycomics approaches have steadily increased in the last two decades, linearly from 1999 to 2009 and exponentially thereafter.
Results culminated from PubMed keyword searches of “genomics,″ “transcriptomics,” “proteomics,” “metabolomics” (and “metabonomics”),
“lipidomics,” and “glycomics” and limited to appearance in publication title or abstract. Genomics and transcriptomics publications are combined
because these approaches rely on sequencing technologies. Metabolomics, lipidomics, and glycomics publications are also combined because
comprehensive analysis of these molecular types typically rely on mass spectrometry (MS) approaches but often involve other technology (such as
nuclear magnetic resonance spectroscopy).
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confidence, but the organization of the constituent atoms into
chemical structures cannot be unambiguously determined from
many possible isomeric compounds with the same molecular
formula.47 Kind and Fiehn reported that for the molecular
formula C15H12O7, 181, 166, and 129 matches were identified
in a search of the chemicals in the Chemical Abstracts,
Beilstein, and Natural Products databases, respectively.47 More
broadly, within 540 000 molecules selected from the Human
Metabolome Database (HMDB)48 and the DSSTox data-
base,49 20% of the molecular formulas match more than five
compounds, and 474 000 molecules have a formula conflict
with at least one other molecule. Thus, even with other
properties such as isotopic signature, chemical structures
cannot be unambiguously identified28,47,50 for novel molecules
from mass alone without use of orthogonal analysis (e.g.,
chromatography, ion mobility, MS/MS) and comparison of
experimental data to that from analyses of authentic reference
chemicals. This problem has been especially prevalent in
spatially resolved metabolomics (i.e., imaging) applications,
where, until recently, it has been challenging to add orthogonal
dimensions of data for improved molecular identification.51−54

Nuclear magnetic resonance (NMR) spectroscopy is an
established tool for assignment of chemical structures to
novel molecules but requires higher sample concentration and
purity, limiting its utility for structural elucidation of novel
molecules in a high throughput, comprehensive manner.
However, small-volume NMR probes55−57 at high field
strengths are greatly improving the sensitivity limitations, and
several approaches of mixture analysis are reducing or
eliminating the need for purity.58−60 Likewise, microcrystal
electron diffraction (MicroED) has recently been demon-
strated for direct and confident structure confirmation.61

For measuring known molecules, efficient analytical method-
ologies for confident identification of large numbers of
metabolites in high throughput metabolomics studies are gas
chromatography−MS (GC-MS), LC-MS, and NMR. Here,
metabolite identification is achieved by comparison of
experimental data to reference libraries containing data from
analyses of authentic chemical standards. Such approaches
satisfy the recommendations of the Metabolomics Standards
Initiative (MSI) of the Metabolomics Society for confident
metabolite identification.62,63 However, the reliance of these
approaches on reference data generated through analyses of
authentic chemical standards is a significant limitation because
the number of chemicals available for purchase is very limited
relative to the number of molecules proposed to exist in the
universe.64 For example, HMDB represents <5% of the
estimated total metabolite space across multiple organisms,
and only ∼10% of HMDB molecules are represented by readily
available authentic chemical standards65 (verified through
custom Python scripts to search known vendors).7,66 Further,
one of the largest repositories of authentic reference spectra,
the Wiley Registry, contains data for nearly 300 000 molecules,
or just <1% of known chemicals when considering the
ChemSpider, PubChem, and American Chemical Society’s
CAS databases, which contain entries for tens of millions of
chemicals.67

There is therefore a tremendous disparity between the
numbers of metabolites, exposure molecules, and xenometa-
bolites that can be confidently identified in metabolomics
studies when adhering to current MSI guidelines versus the
number of molecules postulated to fill “chemical space.” A
reasonable approach to increasing the amount of reference

data for use in small-molecule identification is through in silico
means. This review will discuss the potential for quantum
chemistry approaches to contribute to the calculation of, for
example, chemical properties and reference spectra for
metabolites and other small chemicals, which can be used to
aid molecular identification in complex samples, thereby
overcoming a significant obstacle remaining in the field of
metabolomics.

1.4. Quantum Chemical Applications

1.4.1. Historical Overview. The purpose of this section is
to illustrate the promise of quantum chemistry for metab-
olomics, including prediction of quantities relevant to NMR,
MS, and other methods. While we summarize some
approaches here, numerous reviews and books are available
that cover the applications of quantum chemistry in various
subfields in greater detail.
Quantum chemistry is concerned with calculating the states

and properties of the electrons in a molecular system using the
laws of quantum mechanics (QM). According to the time-
independent Schrödinger equation, the stationary quantum
states of a system (i.e., those with definite energy) are
eigenfunctions of a Hamiltonian operator representing the
electron kinetic energy and interactions among electrons and
nuclei. This review will mostly limit itself to a conceptual
framework bound by several assumptions such as the
separation of nuclear kinetic and electronic energy scales
(the Born−Oppenheimer approximation), nonrelativistic elec-
tronic energy scales, and the absence of fine structure-
producing effects such as spin−orbit coupling. These
assumptions are often made for computational efficiency
without significantly sacrificing accuracy for many applications
(including most presented here), although care must be taken
when simulating systems where these effects are important,
such as nonradiative relaxation around a conical intersection68

or spin crossover induced by heavier elements.69

Schrödinger’s equation does not have an analytic solution
for the general many-electron problem. Exact numerical
solutions are computationally inaccessible for all but the
smallest systems. Thus, quantum chemistry involves finding
approximate solutions that give the optimal compromise
between accuracy and computational cost for problems of
chemical interest. The Hartree−Fock theory70,71 and density
functional theory (DFT),72−74 two of the very first quantum
chemistry methods, were conceived in the 1920s while QM
was still in its infancy. Significant advances were made in the
1960s and 1970s, partially motivated by the revolutions in
technology and exponential increases in processing power that
continued through the early 2000s. In 1998, John Pople and
Walter Kohn were recognized with the Nobel Prize in
Chemistry for their pioneering contributions in molecular
quantum chemistry,75,76 and one of its principal branches,
Kohn−Sham DFT (KS-DFT).77,78 The relationship of
quantum chemistry to other molecular simulation approaches
is illustrated in Figure 4.
Today, quantum chemistry is a flourishing field and

continues to make significant advances both in terms of
theoretical methods that afford increasingly accurate and
efficient approximations and computational methods that take
maximum advantage of available computer hardware and
software libraries. It has become common practice for leading
research groups in this field to release free or commercial
software packages that implement quantum chemistry methods
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for the broader community to apply to chemical problems.
Examples of these software packages include Gaussian,79 Q-
Chem,80 GAMESS,81 Psi4,82 Molpro,83 NWChem,84 ORCA,85

and TeraChem.86,87

Quantum chemistry has made significant impacts in the
chemical sciences due to its ability to routinely compute many
properties of experimental interest with “chemical accuracy”,
i.e., accurate enough to make meaningful interpretations and
predictions.88 The usual working definition of chemical
accuracy is that relative energies between two states should
have an error of <1 kcal/mol compared to a gold standard,
which can be experimental thermochemical data, such as
atomization energies,89,90 or another higher-level calculation. A
commonly accepted gold standard calculation is coupled
cluster with singles, doubles, and perturbative triples (CCSD-
(T)/CBS)91,92 in the complete basis set limit.93,94 In modern
benchmarks, these values are computed indirectly using
composite methods such as the Weizmann-n approaches that
combine the results of several other calculations.95 This
approach is not a gold standard for all properties and systems
because CCSD(T)/CBS is not a valid approximation for
systems with significant multireference electronic charac-
ter,96−98 such as open-shell transition metal complexes or
highly excited electronic states. Moreover, most experiments
measure signals from a thermodynamic ensemble of molecules
undergoing time evolution and sometimes in a condensed-
phase environment, whereas an individual quantum chemistry
calculation is carried out on a single molecular structure, which
makes comparisons difficult. Simulating experimental observ-
ables using quantum chemistry often requires incorporating
molecular dynamics (MD) on the quantum chemical potential
energy surface (PES), configurational sampling, environmental
effects, nuclear quantum effects, and possibly other effects if
experimentally relevant. Thus, the definition of accuracy can

vary broadly depending on the system and property being
considered.
For many methods, it is possible to compute the analytic

nuclear gradient of the energy at relatively low additional cost,
which enables an efficient optimization of energy-minimized
structures and other transition states on the molecular
PES.99,100 This affords a route to predicting the reaction
energy and activation energy of hypothetical reaction
mechanisms, providing important support for mechanistic
understanding of chemical reactivity that is difficult to probe
experimentally. A wide range of properties may be computed
for a given molecular structure, including electronic and
vibrational transition energies, electrostatic moments, and
polarizability.101 Calculations of nuclear shielding and
internuclear couplings provide a route toward computing
NMR observables (section 2.1). Still other properties may be
computed from approximate free energy differences, such as
redox potential102 and pKa.

103,104

Many experimentally measured properties are derived not
from a single structure but from a statistical ensemble at finite
temperature, which could be simulated implicitly by making a
rigid rotor/harmonic oscillator approximation105,106 or
sampled explicitly using MD107,108 or Monte Carlo
(MC)109−111 methods. Effects of the solvent or other chemical
environments are treatable implicitly by using polarizable
continuum models112 or explicitly by including molecules of
the environment in the calculation, although the latter greatly
increases the computational cost and dimensionality of
configuration space. The quantum behavior of nuclei manifests
as zero-point vibrational energy in the harmonic approximation
or can be explicitly simulated using path-integral MD
methods.113−115 Hybrid models such as QM/MM are useful
for explicitly modeling portions of the system, such as a solvent
or protein environment, using inexpensive force field (FF)
models.116,117

The applicability of quantum chemistry should be
considered along several dimensions, including the size of
the system, which affects the computational cost, the level of
theory and amount of sampling needed to compute a result to
desired accuracy and statistical precision, the availability of
experimental data to inform the development of better
methods and models, the importance and complexity of
environmental effects, and last, the accessibility of the
computational methods to nonexpert users.

1.4.2. Relative Energies and Equilibrium Structures. A
basic building block of quantum chemistry applications is the
calculation of relative energy between two chemical states,
which may differ in the number of electrons, atoms, and three-
dimensional structure. Several classes of relative energies
include:

• Ionization energies and electron affinities118,119

• Proton affinities120,121

• Bond dissociation energies122,123

• Atomization energies, the total separation of molecules
into constituent atoms

• Isomerization energies124−126

• Noncovalent interactions127−129

• Conformational relative energies130−132

• Reaction energies and activation energies (covered in
detail in section 1.4.3)

In all of these cases, the calculation involves taking the
difference between two calculated energies, often with the

Figure 4. Quantum chemistry methods (upper right) are considered
highly accurate but also highly expensive compared to empirical
potential-based simulation methods (lower left). Methods that
combine physics-based principles with empirical knowledge, such as
semiempirical models, density functional theory, and future deep-
learning-based methods are promising for improving accuracy without
increasing computational cost.
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preliminary step of energy minimization. Numerous published
benchmark studies describe the accuracy of various quantum
chemistry methods versus the gold standard for these
properties.101,120,133−136

Relative energies form the foundation of simulations that
incorporate more aspects of the experimental system such as
the thermodynamic ensemble, time evolution, environment,
and nuclear quantum effects. It is important to note that to
describe a chemical phenomenon, relative f ree energies are
more meaningful and analogous to experimentally measurable
quantities such as redox potential, pKa, standard reaction free
energies/free energies of activation, and equilibrium con-
formations.
In metabolomics and compound identification applications,

the accurate prediction of relative peak heights is of principal
importance.137−139 Because the relative peak heights of adduct
ions, i.e., [M + H]+, [M + Na]+, etc., vary depending on the
analyte and solvent conditions, these data can be used in
compound identification as discussed in greater detail
below.140 Recent developments in DFT functionals have
seen nearly universal incorporation of empirical dispersion
corrections141−143 and consequently a dramatic improvement
in accuracy for noncovalent interactions.129,134,135 Therefore,
one potential application of quantum chemistry is to predict
the relative peak heights of adduct ions for an analyte by
comparison of noncovalent interaction energies.144,145

1.4.3. Reaction Mechanism Analysis. Perhaps the most
widespread application of modern quantum chemistry is the
analysis of reaction mechanisms, which may be proposed from
chemical intuition or by automated approaches. The basic
computational results in these studies are reaction energies and
activation barriers for elementary steps, which provide insight
into the thermodynamic and kinetic feasibility of the proposed
mechanism.146−150 The reaction rate is proportional to
exp[−Ea/RT], where Ea is the activation energy calculated
from the potential difference between optimized transition
state and reactant structures, R is the thermodynamic gas
constant, and T is absolute temperature. The transition state is
located at a saddle point on the PES, where the direction of
downward curvature corresponds to a vibrational mode of
imaginary frequency that leads toward the reactant and
product structures on either side. At room temperature, an
increase in ∼1.4 kcal/mol of Ea results in a roughly 1 order of
magnitude decrease in reaction rate. Calculated Ea values are
often used as a screen for room temperature mechanistic
feasibility by comparison with a “rule of thumb” value, which
typically ranges from 21 to 30 kcal/mol,151−154 although values
have been reported as high as 40 kcal/mol.155

These calculations neglect the contribution of system-
dependent dynamical properties to the reaction rate but are
still highly useful for mechanistic screening because computed
values of Ea for different mechanistic hypotheses have a wide
dynamic range of 0−100 kcal/mol or more. Multiple
hypotheses may be compared under the assumption that
differences in Ea play the dominant role in the relative rates.
Care must be taken to select an appropriate method, as
detailed benchmark studies in the literature have shown that
many choices of quantum chemistry method and/or basis set
could lead to errors of 10 kcal/mol or more.129,135 Recently
developed density functional approximations, such as range-
separated hybrid functionals with dispersion correction (e.g.,
ωB97X-V,156 M08-HX-D3135,157) and double-hybrid func-
tionals, are able to achieve accuracy to within 1−3 kcal/mol of

the gold standard provided that rather large basis sets, such as
def2-TZVPD, are used.158 However, these methods may be
cost prohibitive for larger systems, and all single-reference
methods (including most DFT functionals) are suspect for
systems that contain strong multireference electronic character.
Free energy corrections are also important in reaction
mechanism analysis; in particular, the inclusion of translational
and rotational entropic contributions has a significant effect on
association and dissociation reactions.85

A long-term goal of reaction mechanism analysis is to
leverage mechanistic insights toward reaction and catalyst
design. For example, computations may be used to choose the
best candidate from a series of catalysts that follow the same
mechanism but differ in their activation energies. Although
quantum chemistry is starting to play a more active role
alongside experiment in this arena, mechanistic investigations
still require significant human and computational effort, and
further developments are needed to make truly novel
predictions and designs. Automated tools for mechanism
generation are a recent development that show promise for
making progress in this field.159−166 Reaction mechanism
analysis is important for metabolomics in terms of predicting
fragmentation patterns in MS experiments, described later in
this article.

1.4.4. Thermodynamic Properties. Quantum chemistry
can provide insight into equilibrium properties of a system by
accounting for the distribution of states in a thermodynamic
ensemble. This is commonly done using simple models; one
common approach is to model the molecular partition function
using a product of ideal gas, rigid rotor, and harmonic
oscillator terms, although several more advanced methods that
go beyond this approximation are available.167 The molecular
vibrational frequencies are obtained from the Hessian (second
nuclear derivatives) of the electronic energy. Alternatively, the
thermodynamic ensemble can be sampled explicitly using MD
or MC methods.
Some of the most important experimentally measurable

quantities are functions of the free energy difference between
two states. These quantities include the standard reduction
potential (redox potential) and pKa, which measure the
tendency for a species to gain electrons and protons in
solution, respectively. The accuracy of DFT in calculating
redox potentials is well established, and it has been hailed as a
tool for rational electrocatalyst design.102,168 Errors in
computed values vs experiment can be as small as 0.1−0.2 V,
which is small compared to experimental variations across a
typical series of redox-active compounds.
The predictions of redox potentials and pKa values have an

important dependence on the choice of solvent model. Widely
used implicit solvent models, which are based on a polarizable
continuum,169−171 tend to have lowered accuracy in systems
where solute−solvent hydrogen bonding effects are important.
Perhaps owing to this difficulty, the sizes of errors in redox
potential calculations tend to be more similar within a group of
chemically similar compounds but vary more broadly across
disparate compounds.172 Errors incurred by implicit solvent
are especially onerous for pKa calculations, where the addition
or removal of a proton often leads to differences in hydrogen
bonding interactions. An error in the calculated ΔG of just 1.4
kcal/mol corresponds to a deviation of 1 pKa unit from
experiment.173,174 The use of explicit solvent models has been
shown to yield improvements in the accuracy of pKa and redox
potential calculations,160,175 but they are much more computa-

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00901
Chem. Rev. 2021, 121, 5633−5670

5639

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00901?rel=cite-as&ref=PDF&jav=VoR


tionally expensive, requiring significant amounts of sampling of
solute and solvent degrees of freedom.
MD and MC are simulation methods that can sample from a

thermodynamic ensemble of states. MD propagates the atoms
in the system using classical equations of motion, and
thermodynamic sampling is achieved by means of a thermostat
that perturbs the molecular velocities in order to sample from
the constant temperature ensemble. A barostat can similarly be
used to perturb simulation cell volumes to sample from the
constant pressure ensemble. In principle, MD can be used with
any underlying potential function, and it is termed ab initio
molecular dynamics (AIMD) when the potential is calculated
using quantum chemistry methods. MC, on the other hand,
performs sampling by making randomized proposed moves
through configuration space with acceptance probabilities
calculated from ratios of Boltzmann factors. Both methods
have been applied to compute equilibrium properties of
molecular and solid substances.
For ordinary substances such as liquid water, good

agreement with experimental data can be reached for
properties such as the bulk density and radial distribution
function.176,177 However, nuclear quantum effects need to be
explicitly accounted for using path integral MD113−115 or
otherwise roughly approximated by increasing the simulation
temperature. Because ab initio methods are not parametrized
to experimental data, they have also been applied to predict
new phases of matter at extreme conditions, including
superionic phases of ice178 and metallic phases of hydrogen,109

which are hypothesized to exist in planetary cores but have yet
to be confirmed experimentally.
In metabolomics applications, compounds are often

separated based on differences in the strength of intermo-
lecular interactions with immiscible solvent phases.179−181 The
key physical quantities that predict retention time are the
octanol−water partition coefficient (log P) or distribution
coefficient (log D), which is proportional to the difference in
solvation free energies in the two phases.182 Although
empirical models such as neural networks have long been the
dominant method for predicting partition coefficients,183−185

we expect that quantum chemical methods will play an
increasingly important role in predicting this important
property in the future as sampling methods and computational
efficiency continue to improve.
1.4.5. Spectroscopic and Excited State Properties. A

variety of quantum chemistry methods are available to model
how molecules respond to electromagnetic radiation in a
variety of energy regimes. These methods are broadly useful
for interpreting and assigning spectra, including in compound
identification applications. At the low end of the energy
spectrum, NMR shielding tensors and internuclear couplings
may be computed using DFT (section 2.1).
Infrared (IR) spectra, which probe molecular vibrations, can

be calculated from quantum chemistry in several ways. One
type of approach is based on expanding the PES around a
minimum energy structure, starting with normal modes
obtained from diagonalizing the Hessian matrix. Because this
approach ignores higher-order anharmonic effects, method-
dependent empirical scaling factors are applied to calculated
harmonic vibrational frequencies in order to obtain improved
agreement with experiment.186 Going beyond the harmonic
approximation, a fourth-order expansion called a quartic FF187

can be used in conjunction with vibrational perturbation
theory or vibrational configuration interaction to obtain

rovibrational spectra including anharmonic effects.188,189 In
the other kind of approach, MD simulations can also be used
to simulate IR spectra by taking the Fourier transform of the
dipole autocorrelation function.190,191 This method is useful
for obtaining spectra in bulk liquids and macromolecules,
where soft degrees of freedom and multiple minima are more
prevalent. The application of IR to small molecule identi-
fication is discussed in section 2.3.
Visible and ultraviolet (UV) wavelengths induce electronic

excitations, which require quantum chemical descriptions of
the excited state. Building off of the foundations of Hartree−
Fock and DFT, the configuration interaction singles (CIS)192

and time-dependent DFT (TD-DFT)193 methods build a
Hamiltonian matrix in the space of single excitations from the
reference ground-state wave function, followed by diagonaliza-
tion to obtain excited state energies. TD-DFT tends to yield
root mean-squared errors of ∼0.3 eV in vertical excitation
energies for many functionals,133 but the topography of the
excited state potential energy surface is incorrect, leading to
incorrect descriptions of conical intersections where the
excited-state and ground-state energies become degenerate.
Multireference wave function methods194,195 can yield
improved accuracy for excited-state potential energy surfaces,
which may be applied to light-activated molecular switches and
other electronically excited molecules.
The accuracy of the equilibrium structure is usually

considered to be secondary to the reproduction of relative
energies in most applications. One important exception is in
microwave (rotational) spectroscopy experiments that can
provide very accurate values of the moments of inertia of gas-
phase molecules; these are sensitive to changes in bond lengths
to within 10−13 m and bond angles to within 0.01°.122 The
most accurate measurements of molecular geometry are
derived from these experiments, and highly accurate optimized
structures can in turn be used to assign microwave spectra of
unknown compounds.123

2. CURRENT APPLICATIONS AND REAL EXAMPLES

2.1. Nuclear Magnetic Resonance

The main alternative to the MS-based approach to detect
metabolites is provided by analytical NMR spectrosco-
py.65,196−199 High-resolution NMR analysis is capable of
providing accurate structures of a range of molecules including
metabolites.200 This is of import in metabolomics, where
ultrasensitive mass spectrometry instruments can detect
differential mass signals but do not provide enough structural
information to structurally characterize a given metabolite.
To bridge the gap between spectroscopic observations and

structure the metabolomics field has been turning to the tools
of computational chemistry.201−208 Over the past decade, in
silico calculations of NMR chemical shifts have significantly
improved in accuracy, affordability, and reliability. The overall
improvements in NMR computation come from methodo-
logical advancements, increased computational power, as well
as complete end-to-end automation of these calculations.209,210

Therefore, reliable chemical shift calculations are now highly
accessible to chemists.
Extensive literature exists in the field of NMR chemical shift

computation. For example, Kaupp, Buhl, and Malkin edited a
book on the calculation of NMR and electron paramagnetic
resonance (EPR) parameters.211 In 2008, Casabianca and de
Dios published an extensive review on ab initio NMR chemical
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shift calculation.212 Bryce and Wasylishen wrote an extensive
review, including an overview of the calculation of NMR
parameters using ab initio methods.213 Additionally, a review of
chemical shielding calculations on proteins, peptides, and
amino acids has been provided by Oldfield.214 Several
applications of chemical shift calculations are described by
Facelli’s review.215 Gauss and Stanton added electron
correlation to the computation of chemical shielding.216

Tossell used a cluster model to compute shielding values for
crystals,217 and Sebastiani reviewed chemical shift calculations
in condensed phases.218 Benzi et al.219 and Bagno et al.220

included solvent effects in chemical shift calculations, and
Oldfield included electrostatic effects on chemical shifts and
applied this improved method to protein structure determi-
nation.221 On the other hand, Hunter et al. discussed the use of
semiempirical methods to evaluate chemical shifts222 as did
Merz and co-workers.223 For rapid NMR shift computation for
larger systems, a QM/MM approach has been described.224,225

Finally, Bryce and Sward summarized the state-of-the-art for
the study of quadrupolar halogens using solid-state NMR.226

There is an extensive literature of the use of quantum
mechanical methods to explore NMR related problems,
including the determination of relative stereochemistry227−229

and NMR assignment of regioisomers.230 Tantillo, Siebert, and
Lodewyk review the use of ab initio and DFT calculations for
NMR chemical shift prediction.231,232 Benchmarking studies
for the prediction of chemical shifts with different methods and
levels of theory have been reported.233−235 Further summaries
on advancements in the evaluation of chemical shielding values
can be found in Jameson and de Dios.236,237

To the best of our knowledge, the studies mentioned above
only considered single conformer data sets for computation of
NMR chemical shifts and accuracy assessment. In the case of
flexible molecules with multiple conformers, the field is
considerably less mature. For flexible molecules (e.g.,
metabolites or drug-like molecules) with a large chemical
space, considering a single conformer for these calculations
most likely yields erroneous results.238 Therefore, to get
meaningful NMR data for flexible compounds, a large chemical
space (i.e., robust conformational search) needs to be
considered. There have been three successful attempts to
design an automatic protocol to predict NMR chemical shift of
flexible molecules. Willoughby et al., Yesiltepe et al., and
Grimme et al. have developed automated approaches for 1H
and 13C chemical shift prediction for the nonexpert.204,209,210

The computational protocol of Willoughby et al. is shown in
Figure 5. Another protocol was developed by Xin et al. to
compute 13C NMR chemical shifts (Figure 6), employing the
standard DFT method with an optimized basis set (cc-pVDZ)
and a DFT functional (B3LYP) for organic molecules.239 All of
these protocols employ high-level QM methods, yielding
accurate and reliable NMR results, but due to the expense of
the QM methods used, they are too computationally expensive
to handle a large number of samples with unknown structures.
Moreover, more complex molecules like metabolites, with
many rotatable bonds, offer challenges associated with
sampling complex conformational spaces and the extant
protocols have yet to be fully validated.
An efficient computational workflow must use the most

computational efficient method at each step to accomplish the
desired goal. Accurate QM methods are very computationally
expensive and should only be used when no other options are
available.240,241 Where possible less expensive FF methods can

be used, but attention should be paid to their overall accuracy.
Machine learning (ML) methods can also be substituted where
appropriate.242,243 In the approach of Das et al., their workflow
takes advantage FF, ML, and QM-based methods to generate
structural predictions for medium-size organic molecules
including metabolites.244 The pipeline encompasses the
following steps (Figure 7): (i) conformation generation using
an FF-based method, (ii) filtering the FF generated
conformations using the Atomic Simulation Environment-
Accurate Neural Network Engine for Molecular Energies
(ASE-ANI) model, (iii) clustering of the optimized con-
formations based on structural similarity to identify chemically
unique conformations, (iv) DFT structural optimization of the
unique conformations, and (v) DFT NMR chemical shift
calculation.244 This protocol can calculate the NMR chemical
shifts of a set of molecules using any available combination of
DFT theory, solvent model, and NMR-active nuclei, using
both user-selected reference compounds and/or linear
regression methods. The protocol reduces the overall
computational time by 2 orders of magnitude over methods
that optimize the conformations using fully ab initio methods

Figure 5. NMR chemical shift calculation protocol developed by
Willoughby et al.204

Figure 6. NMR chemical shift calculation protocol developed by Xin
et al.239 Reproduced with permission from ref 239. Copyright 2017
American Chemical Society.
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yet matches experimental structural observations. The
complete protocol provides an efficient way to obtain chemical
shifts for conformationally flexible metabolites.
To illustrate the NMR chemical shift (1H and 13C) protocol

of Das and co-workers, the case of folate (C19H19N7O6: Figure
8) is presented herein. Folate was run through the workflow

illustrated in Figure 7. The detailed results are given in Figure
9 and in Tables 1−Table 3. Overall, the mean absolute error
(MAE) values of 1H and 13C are 0.26 and 1.63, respectively,

confirming a good agreement of computational data with the
experimental chemical shift. MAE values are calculated using
eq 1.

N
MAE

1

i

N

i iav
1

comp exp∑δ δ δ= |Δ | = | − |
= (1)

Figure 7. Das and Merz protocol to calculate NMR chemical shift.
This protocol includes FF, ML-QM, and standard QM methods to
improve efficiency of NMR computation technique with low
computational cost.

Figure 8. BMRB ID, no. of atoms, no. of rotatable bonds, FF
generated conformation, ANI optimized conformations, and no. of
clusters are reported for folate molecule.

Figure 9. Plots of the differences between the calculated and
experimental 1H and 13C NMR chemical shifts of folate. Shielding
constants were computed at the B3LYP/6311G+(2d, p) level of
theory and converted to linear scaled reference chemical shifts. Values
of chemical shift differences are given in ppm.

Table 1. Relative Energies, Boltzmann Factor, and
Equilibrium Mole Fraction of All Structurally Distinct
Conformations of Folate

conformation
no.

relative energy
(kcal)

Boltzmann
factor

equilibrium mole
fraction

1 0.36 0.55 0.17
2 2.94 0.01 0.00
3 2.34 0.02 0.01
4 2.93 0.01 0.00
5 3.42 0.00 0.00
6 1.65 0.06 0.02
7 2.52 0.01 0.00
8 2.71 0.01 0.00
9 3.09 0.01 0.00
10 6.83 0.00 0.00
11 0.39 0.51 0.16
12 2.91 0.01 0.00
13 1.20 0.13 0.04
14 4.17 0.00 0.00
15 0.46 0.46 0.15
16 2.19 0.02 0.01
17 7.47 0.00 0.00
18 3.82 0.00 0.00
19 1.20 0.13 0.04
20 1.77 0.05 0.02
21 4.44 0.00 0.00
22 6.18 0.00 0.00
23 2.68 0.01 0.00
24 0.00 1.00 0.32
25 3.58 0.00 0.00
26 1.18 0.14 0.04

Table 2. Computed and Available Experimental 1H NMR
Shifts for Folate

atom
no.

computed chemical shift
(ppm)

experimental chemical shift
(ppm)

H33 7.52 7.37
H34 7.39 7.37
H35 6.69 6.17
H36 6.51 6.17
H37 2.43 2.15
H38 2.07 2.05
H39 2.35 2.32
H40 2.57 2.32
H41 4.67 3.94
H42 4.66 3.94
H43 8.39 8.37
H44 4.34 4.27
H45 4.93
H46 4.92
H47 5.33
H48 6.29
H49 7.69
H50 8.14
H51 9.09
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where δi
exp is the experimental NMR chemical shift value of the

ith nucleus of a molecule and δi
comp is the computed NMR

chemical shift of same nucleus. This high-throughput work-
flow244 can be deployed to obtain the chemical shifts for large
collections of candidate metabolite structures to facilitate their
characterization.
2.2. Ion Mobility Spectrometry

Collision cross section (CCS, units: Å2) is a gas-phase property
of a molecule that is obtained using ion mobility spectrometry
(IMS). In IMS, ionized molecules enter a drift tube or other
ion conduit that contains an electric field to accelerate sample
ions and a buffer gas to produce a countering drag force,
resulting in separation based on the ion’s size, shape, mass,
charge, conformational population, and interaction with the
buffer gas.245 IMS is the gas-phase separation method
analogous to liquid phase separation by electrophoresis,
which also relies on molecular interactions with a buffer and
electrical mobility to provide a force for acceleration toward a
detector. Depending on the instrument, CCS can be calculated
from the time taken to drift (as in drift time IMS) before
detection (typically at a mass spectrometer) or via calibration
against analytes with known CCS (as in traveling wave IMS).
While IMS-MS techniques have been explored for nearly six
decades, the use of CCS as a complementary property to mass
and chromatography-derived retention time for identification
of small molecules has only become popular, by way of
instrument commercialization,246 in the past decade.245 IMS
does not rely on condensed phase interactions that can be
subject to degradation, contamination (e.g., heavy carryover),
high variability, and difficult manufacturing requirements.
Thus, measured CCS values can be very consistent over time
and between laboratories, reaching relative standard deviations
lower than 0.3%.247 Furthermore, because CCS is obtained
after ionization, each analyte in the sample of interest can be
represented by multiple adduct ions, a function of the analyte−
matrix interaction, each with its own CCS and mass. As a
result, observing multiple adduct ions lends additional
evidence to the presence of a particular molecule.248

To better understand molecular ion behavior in ion mobility
instruments, the prediction of CCS from molecular ion
structures bourgeoned in the 1990s.249,250 It was not until
the early 2000s that researchers began to routinely use DFT
methods to generate gas-phase molecular ion structures as a
foundation for CCS calculations.251−253 Currently, DFT-based
calculations are considered the gold standard method in
determining the adduct conformations that give rise to
measured CCS; however, predicting CCS for use in small-
molecule identification studies is quickly shifting to machine
and deep learning methods (discussed in section 4.2) due to
their speed and accuracy.254−258 Typical procedures using
DFT for CCS calculations include the prediction of the
bonding structure of the ionized adduct (e.g., specific atom site
of ionization), generation of a population of conformers of the
adduct, optimization of conformer geometries, relative energy
calculations for the conformers, CCS calculation for each
conformer, and finally a method of either combining CCS
values of conformers into a single combined CCS value for that
conformational population (e.g., averaged or Boltzmann-
weighted) or selecting a conformer that is most likely to
represent an experimentally observed CCS peak. DFT is
typically used for the geometry optimization and energy
calculation steps, but it can also be used for ionization site
predictions and the generation of conformer populations.
Some of the earliest examples of DFT use in CCS

calculations for ion mobility experiments came out of Prof.
Michael Bowers’ (University of California at Santa Barbara)
and Prof. David Clemmer’s (Indiana University) groups. In a
study by Wyttenbach, Witt, and Bowers, DFT calculations
were used for a set of conformers (generated using the Assisted
Model Building with Energy Refinement, or AMBER,
molecular dynamics suite) of glycine, alanine, and their
methyl-substituted derivatives.259 The study showed agree-
ment between the predicted and observed CCS values,
demonstrated the ability to determine likely conformations
of the adducts and found differences in the adduct ion
attachment (charge solvation, where the charge is stabilized by
an electron dense region of the neutral molecule, and salt
bridge, where the charge interacts with the zwitterionic form of
the molecule).259 In a study by Leavell et al., diethylenetri-
amine−hexose complexes were investigated with CCS
calculated using DFT-derived geometries.252 Geometry opti-
mization was performed using a low level of DFT theory along
with a semiempirical method (AM1), with subsequent energy
calculations performed at a higher level of theory. A small set
of low energy candidate structures were found that match well
to experimental CCS values, with evidence pointing to chair or
twist-boat conformations for the hexose portion of the
complexes.
While most early studies using DFT in CCS calculations

focused on using these approaches to determine likely
conformer structures of known molecules and complexes, it
must be noted that even for low energy conformations, wildly
different conformational structures can give rise to CCS values
that are close enough to be experimentally indistinguishable
with current instruments. Furthermore, CCS peaks of
individual adducts can be much broader than the difference
in peak max (center) CCS values between different molecules,
reflecting the diverse conformational populations of ion
packets. This issue becomes more pronounced with increased
mass and decreased molecular rigidity (i.e., as degrees of
freedom increase). Because most metabolomics studies using

Table 3. Computed and Available Experimental 13C NMR
Chemical Shifts for Folate

atom
no.

computed chemical shift
(ppm)

experimental chemical shift
(ppm)

C1 129.92 131.32
C2 129.99 131.32
C3 111.41 113.93
C4 112.38 113.93
C5 27.20 31.09
C6 37.42 37.09
C7 45.05 47.45
C8 149.48 150.97
C9 150.86 152.47
C10 120.09 123.10
C11 150.75 150.41
C12 57.95 58.65
C13 184.59 185.20
C14 125.97
C15 143.16
C16 166.65
C17 166.79
C18 172.26
C19 150.36
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IMS operate at room temperature, adducts can rapidly
interchange between conformations, as revealed by observed
CCS peak distributions. Thus, we find the most value in DFT
calculations for use in predicting CCS distributions to build
identification libraries (i.e., to build evidence for identification
of the underlying adduct) as opposed to determining the
underlying conformer of an observed IMS peak. For
determining specific conformations of gas-phase ions (espe-
cially when the molecule of interest is already known and
purposefully being studied), we recommend cryogenic IR ion
spectrometry,260 which is extremely sensitive to small changes
in molecular conformation and provides tight constraints for
calculations of molecular structures261 (further details in
section 2.3).
Through the pioneering work of Iain Campuzano and

colleagues, the use of quantum chemical-based theoretical
calculations of CCS for small molecule identification first
appeared in the literature in 2010 (Figure 10).262 In this work,

the example molecules, isomeric hydroxylated metabolites of
ondansetron, have indistinguishable MS/MS fragmentation
spectra due to the hydroxyl moiety being located on the
unfragmented benzene ring for all isomers. Thus, the matching
of calculated CCS to the experimental CCS distributions was
the sole distinguishing dimension of data for identification.
Campuzano and colleagues quickly laid the foundation for use
of DFT-based CCS calculations in small-molecule identifica-
tion.263,264 Recently, a high-performance computing (HPC)-
friendly cheminformatics workflow, the in silico chemical
library engine (ISiCLE), was created to automate all steps of
DFT-based CCS calculations and uses software freely available
to academics.265

2.3. Infrared Spectroscopy

IR spectroscopy has a long history of use in the identification
of small molecules. During the past 30 years, hundreds of
papers have described how IR spectroscopy techniques can be
coupled to quantum chemical calculations like DFT to aid
identification (via predicted resonance frequencies) and
quantitation (via prediction of peak intensities). Like CCS,

IR spectra can provide additional evidence for specific
molecular structures, which may not be differentiated through
traditional MS methods. For example, isobars, enantiomers,
and other types of isomers may not always be separated using
reversed-phase chromatography and may have identical MS/
MS fragmentation spectra266 or even indistinguishable CCS.
With rare exception, IR spectra are unique for every small
molecule.267 Note that IR-vibrational circular dichroism
(VCD) methods are required for determining the stereo-
chemistry of chiral molecules. This approach, too, is amenable
to DFT calculations that are accurate enough to determine
absolute configuration.268

Martens et al. provided a thorough review of IR ion
spectroscopy (IRIS) for small-molecule identification, includ-
ing discussion of the history of IRIS for molecular
identification, IRIS techniques, experimental advances, and
applications in untargeted metabolomics.269 Furthermore, this
review highlights the use of DFT, which can be both fast and
accurate for gas-phase organic molecule ions, to support
identification of unknowns without having a physical reference
(i.e., standard) available. As an example, Martens et al.
demonstrate the identification of a feature unidentifiable by
LC-MS/MS, generated from samples taken from two siblings
with a neurological disease of unknown etiology. IR spectra
were calculated for candidate molecules obtained from a
METLIN270 search, and the feature was identified as methyl-2-
pyrrolidinone (an industrial solvent used in the production of
polymers) by matching the measured IR spectra to a predicted
spectrum (Figure 11).
Of significant importance to the small-molecule identifica-

tion field is the recent advancement of cryogenic IRIS,
spearheaded by groups at the Swiss Federal Institute of

Figure 10. Drug ondansetron and the three hydroxylated metabolites
identified in Dear et al. 2010.262 This study was a first demonstration
of the use of quantum chemical-based theoretical calculations of CCS
for small-molecule identification. The four isomers had indistinguish-
able MS/MS fragmentation spectra due to the hydroxyl moiety being
located on the unfragmented benzene ring, thus, the matching of
calculated CCS to the experimental CCS distributions was the sole
distinguishing dimension of data for identification. Reproduced with
permission from ref 262. Copyright 2010 Wiley and Sons, Ltd.

Figure 11. Computed IR spectra (colored traces, a−d) of potential
candidate structures resulting from a database search for an unknown
feature at m/z 100.0757 compared to the IRIS spectrum of the
unknown feature (black trace) from the patient sample. (e) Compares
the IR spectrum of the reference compound N-methyl-2-pyrrolidi-
none identified by the match found for the predicted spectrum.
Reproduced with permission from ref 269. Copyright 2020 Elsevier.
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Technology Lausanne and University of Florida, led by
Professors Thomas Rizzo260,261,271−276 and Nicolas Pol-
fer,277−281 respectively. If the ultimate goal of IR spectroscopy
is to determine structural information on a molecule, the
highest resolution (and highest deconvolution) can be
obtained by reducing thermal inhomogeneous broadening
and conformational heterogeneity.260 This can be done by
cooling the ion packets (cryogenic cooling) and using
conformational selection techniques (such as ion mobility).
Cryogenic IRIS is sensitive to small changes in conformation,
and when it is combined with a conformational filter such as
IMS, both the measured CCS and IR spectra data are bolstered
to provide overwhelming evidence for the presence of a
molecule,261 which can be confirmed through corresponding
quantum chemical computations without relying on reference
material. This is an emerging technology, and it remains to be
seen how IMS, cryogenic IR spectroscopy, and quantum
chemical calculations can be coupled for molecular identi-
fication to be performed in complex samples.
Some initial results on small molecules appear promising. As

the only example that couples all three of these techniques to
date, in 2018, Kamrath and Rizzo determined that the 178 Å2

CCS conformer of the N-terminal fragment of bradykinin
(RPPGF; [M + 2H]2+ adduct) was consistent with the trans-
Pro2/trans-Pro3 isomer geometry (Figure 12).261 This analysis
relied on cryogenic IR spectra and DFT optimized molecular
geometries. Interestingly, the trans-Pro2/trans-Pro3 isomer
geometry is also that which is observed in solution via NMR
and implies that the solution structure maintains its geometry
during ESI. Other works without coupled ion mobility have
also shown the value of quantum chemical calculations for
molecular and conformer identification with the use of
conformer-selective cryogenic IR spectroscopy.275,281,282

2.4. Mass Spectrometry

The main challenge of mass spectrometrists who are
attempting to identify unknown compounds is in the
interpretation of tandem mass spectra, thus the spectrum-to-
structure approach (Figure 13). Quantum chemistry has had
less impact on this subfield of MS when compared to
spectroscopic methods such as IR, Raman, or NMR spectros-
copy.283 For example, there are no completely quantum-
chemistry-based computational pipelines that allow for truly
unknown mass spectra to be analyzed, substructure assembled,

and final structures proposed. Additionally, more complex
approaches such as multiple-stage MS/MS exist (i.e., MSn) that
allow more intricate relationships between precursors and
multiple product ions at different stages to be built.284,285 So
far, only cheminformatics, machine learning approaches,286−288

or hybrid models have been able to perform successful
spectrum-to-structure analysis.289

The structure-to-spectrum approach is a very promising
method for compound identification, because the number of
known chemical structures far exceeds the current number of
available experimental mass spectra (∼1 million).291 Molecular
databases such as ChemSpider and PubChem provide around
100 million compounds that could be used to calculate
theoretical mass spectra based on quantum chemistry. It would
then be possible to search unknown experimental spectra
against vast libraries of theoretically predicted mass spectra.
In contrast to quantum-chemistry-based calculation of

NMR, IR, UV, and Raman spectra, no straightforward
procedure exists for quantum-chemistry-based prediction of
mass spectra. For example, prediction of IR and Raman
vibrational spectra became possible by 1965 using simple
FFs292 and in the late 1970s using ab initio calculations. While
single fundamental fragmentations can be predicted with the
help of quantum chemistry, the cascade of reactions and
rearrangements resulting from multiple reaction pathways, and
most importantly the m/z peak abundances from complex
molecules, have been highly difficult to deduce.

Figure 12. Ion mobility data (left) and cryogenic infrared vibrational spectra of individual conformer families of bradykinin [M + 2H]2+, consistent
with the trans-Pro2/trans-Pro3 isomer geometry. Reproduced with permission from ref 261. Copyright 2018 American Chemical Society.

Figure 13. MS-based compound identification paradigm. Mass
spectrometrists mostly deal with unknown mass spectra that need
structural assignments (spectrum-to-structure). New algorithms to
understand fragmentations need to be developed with the help of the
quantum chemical community. Since the development of Grimme’s
QCEIMS method in 2013,290 it is now possible to predict 70 eV mass
spectra using Born−Oppenheimer ab initio molecular dynamics
directly from structures (structure-to-spectrum). Large chemical
databases with millions of compounds can be used to predict high-
quality theoretical mass spectra.
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In a major breakthrough and one of the most important
discoveries in computational MS, Grimme published the
Quantum Chemistry Electron Ionization MS (QCEIMS)
program for the first principle calculation of 70 eV mass
spectra in 2013.290 QCEIMS is discussed in more detail in
section 2.4.1.
2.4.1. Electron Ionization (EI). Electron ionization (EI)

MS (70 eV) is an established analytical technique and is
commonly coupled to GC for analysis of small molecules
below 400 Da. Electrons are emitted from a heated filament
and focused on gaseous neutral molecules. When the
accelerated electrons hit the neutral molecule, radical cations
are formed and another electron is ejected. The vibrationally
excited carbocations then undergo further bond dissociations
and fragmentations on a very fast time scale. The smaller
mostly singly charged fragment ions are then accelerated
toward a detector and recorded as spectral signals. The
ionization efficiency at 70 eV is the highest, and most
molecules can be ionized at this energy, allowing for creation
of reproducible mass spectra.293 The power of GC-MS lies in
the fact that the instrument industry has subsequently
standardized the EI source energies to 70 eV, resulting in
the availability of reproducible spectra and available databases
to search.294 Gas chromatography coupled to tandem mass
spectrometry (GC-MS/MS) has not reached a breakthrough
yet due to the more complex instrumentation and missing MS/
MS spectral databases for spectral matching.295

Historically, the interpretation of EI-derived spectra
depended on statistical rate theory296−300 and investigation
of kinetic processes, especially work based on quasi-
equilibrium theory (QET)301 and Rice−Ramsperger−Kas-
sel−Marcus (RRKM)302−305 theory, which can be used to
predict rate constants. Many of the classical investigations of
70 eV radical cations or anions are limited to single ion species
or specific molecules due to the complexity of fragmentation
and rearrangement reactions.
The main disadvantage of traditional QET/RRKM

approaches is that rate calculations are based on the selection
of specific ion transition states and activated complexes on the
PES. With increasing atom numbers, the complexity of the
reaction space rises exponentially and would require a priori
knowledge of reaction pathways that are not always
available.306 Methods such as the global reaction route
mapping (GRRM) strategy,307 the AutoMeKin software308 or
the Chemical Trajectory Analyzer (ChemTraYzer) software309

have been developed to systematically and automatically
explore the reaction space.159

The QCEIMS approach published by Grimme in 2013
combines Born−Oppenheimer molecular dynamics (BOMD),
a type of AIMD, with statistical sampling to predict 70 eV mass
spectra.290 In contrast to other methods, QCEIMS is purely
based on physical and chemical principles and can calculate
mass spectra from any given molecule. Using a combination of
ab initio molecular dynamics (AIMD) and stochastic sampling
across hundreds of reaction pathways, the correct m/z value of
ions and their associated abundances can be predicted. More
excitingly, all reaction trajectories are retained and allow for a
“look inside” the reaction processes of a mass spectrometer,
which then makes it possible to investigate all fragmentations
and rearrangements individually. To achieve a balance between
efficiency and accuracy, QCEIMS can calculate on various
levels of theory, including semiempirical models OM2/
OM3,310 DFTB+,311 GFNn-xTB,312 and several DFT

methods. The complex relaxation processes from the electroni-
cally excited state of the precursor ion are modeled by limiting
the reaction on ionic ground-state PES. The impact excess
energy is converted to kinetic energy by a heating process,
during which the atomic velocities are scaled to a preset impact
excess energy value. Such a simple electronic structure can
handle the fragmentation reactions and its ability to give a
reasonable result is one of the key innovations of QCEIMS.290

The QCEIMS software is coupled with several independent
software packages such as ORCA,313,314 TurboMole,315

MOPAC,316 MNDO99,317,318 and DFTB+.311 Most impor-
tantly, the latest independent and therefore stand-alone version
of QCEIMS directly implements the GFN-XTB method. This
allows for simple installation and practical use of QCEIMS in
any research environment with access to HPC. The only
required input is a chemical structure. Because the GFNn-
xTB312 methods are parametrized to elements up to Z = 86,
they are applicable to the most common molecules and
therefore provide calculations of 70 eV mass spectra with
metalloids such as silicone.319,320 This is important because the
trimethylsilyl group (TMS) is often used during GC-MS
derivatization experiments.321

One of the advantages of QCEIMS is that reaction pathways
are automatically recorded as MD trajectories during the
simulation. This allows for comprehensive investigation of the
fragmentation mechanism. However, the confirmation of such
reactions would require comprehensive investigations because,
for any given reaction, a multitude of possibilities exists. In the
original paper,290 Grimme found that most of the primary
fragmentations occur within 2−3 ps, while secondary
fragmentation reactions take much longer but are important
in larger systems. Many well-known reaction pathways in MS
are accurately reported by QCEIMS, including α-cleavage,306

McLafferty rearrangement, retro-Diels−Alder322 reaction, and
CO loss.290 For molecules with several tautomers, a
combination of initial conditions based on Boltzmann
population can be used to improve simulation accuracy.322

In 2016, Cautereels et al. described a different method for
the calculation of 70 eV mass spectra using empirical rules for
limiting the number of fragmentations along the PES based on
DFT calculations.323 The rules include observations of bond
strengths, bond cleavages (that are thermodynamically
controlled), and 1,4-rearrangements and McLafferty rearrange-
ments (that are kinetically controlled).324 The procedure
includes conformational sampling and calculation of Boltz-
mann weights including the calculation of the most stable
radical cations. Homolytic and heterolytic fragmentation
pathways are calculated under observation of the heuristic
rules. Final peak abundances are determined based on a
formula that includes the average of energies of the
fragmentation pathways and specific fragments. Such an
approach could become very useful in the future for detailed
investigations of reaction pathways using classical transition
state theory.
Similar to the evaluation of machine-learning prediction

methods such as CFM-ID,325 quantum chemical models have
to be rigorously tested by comparing theoretical predictions
against experimental reference spectra.326 Similarity match
scores and compound rankings should be reported.294 This can
be done with the National Institute of Standards and
Technology (NIST) MS Search program and the NIST and
MassBank of North America (MoNA) mass spectral data-
bases.295
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2.4.2. QCEIMS Computational Costs and Accuracy.
The QCEIMS protocol contains three types of quantum
mechanical calculations: energy/force calculations to generate
the potential energy surface for MD, molecular orbital (MO)
calculations to determine internal excess energies, and
ionization potential (IP) calculations of each fragment to
generate the statistical charges. The original version of
QCEIMS utilizes DFT methods for MO and IP calculations,
whereas the energy/force calculations for the time-consuming
MD steps use the OM2/OM3327 orthogonal corrected
semiempirical methods.
For example, the simulation of the 70 eV EI mass spectrum

of anisole (C7H8O, MW = 108.057 Da) (Figure 14) requires
1.2 million individual MD steps and 82 min of computational
time on 16 CPU cores at the OM2 level. The choice of the
underlying method significantly affects simulation speed. The
GFNn-xTB methods319,320 will be 10−20 times slower than
the semiempirical OM2310 simulations, while purely DFT-
based MD can be 100 or more times slower than the
semiempirical methods.
The computational cost for semiempirical methods is usually

much smaller than ab initio methods (OM2/PM6328 < GFNn-
xTB < DFT), whereas in terms of accuracy, we see the
opposite trend with DFT being the most accurate method
(DFT > GFNn-xTB > OMx/PMx). Interestingly, chemical
bonds are more easily dissociated in semiempirical simulations
relative to the more accurate DFT simulations.329 Therefore,
more accurate calculations of the PES may require even more
simulation steps with longer fragmentation processes. While
semiempirical methods like OM2/OM3 are significantly faster
than GFNn-xTB, the PES along bond dissociation coordinates
are not sufficiently accurate, leading to simulated spectra that
have lower similarity scores when compared to experimental
reference spectra (Figure 14).
Because DFT methods are closer to the “exact” PES, they

should be used as a reference in evaluating more approximate
models,329 but their increased computational cost puts them
out of reach for simulating EI mass spectra of larger molecules.
We are optimistic that GPU-accelerated implementations of
DFT methods in software such as TeraChem87,330 or Fermions
++ may lead to fast high-accuracy simulations.331

However, the usage of fractional occupation number
weighted densities332 can reproduce some properties of

multireference wave functions, making it a possible low-cost
alternative for treating multireference systems. On the other
hand, when the energy gap between the excited state and
ground state goes to zero, the Born−Oppenheimer approx-
imation and single reference methods used in QCEIMS can
break down. The treatment of highly excited electronic states
using multireference methods,96−98 such as the states accessed
during QCEIMS, is under active investigation and can guide
the development of improved simulation approaches in the
future.
The accuracy of predicted in silico spectra has to be

evaluated against diverse and large number of experimentally
measured spectra.294 QCEIMS (with OM2/OM3) performs
on the same accuracy level as the best available machine
learning algorithms such as CFM-ID.325 The QCEIMS method
also has the advantage that any given molecule can be
calculated. The reason is that machine learning methods
require experimental training data, while QCEIMS as an ab
initio method is only based on physical and chemical principles.
The most important question for practitioners is the practical
use of algorithms in daily research applications. Currently, it is
not possible to calculate most compounds with high similarity
match scores (>850). It is also not yet possible to determine
the quality of predictions in advance due to the stochastic
nature of the computations. It is foreseeable that with
improved accuracy of future versions of QCEIMS and related
methods, a wide range of in silico spectra can be used for
training in machine leaning to allow for even faster simulation
of in silico mass spectra from all known compounds.

2.4.3. Coupling EI to Other Spectroscopic Methods.
While GC-MS mass spectra at 70 eV can give structural
insights, it is not possible to fully interpret all mass spectra
because in many cases the molecular ion is not observed and
following individual fragmentations is not directly possible.
Techniques such as chemical ionization or cold EI can help
increase the stability and abundance of the molecular ion.333

Furthermore, integrating parallel analysis techniques such as
IR, Raman, and UV will allow for easier structure-to-spectrum
identification using quantum mechanical calculations of optical
spectra.334 In such a case, MS and optical spectroscopy
experiments are performed in parallel, and the resulting spectra
can be investigated theoretically using quantum chemistry
methods or QM/MM.335 For example, threshold photo-

Figure 14. The 70 eV mass spectra of anisole calculated with QCEIMS. (left) The in silico spectrum calculated with the OM2 semiempirical
function, while (right) shows the GFN1-xTB Hamiltonian. Both algorithms underestimate the peak at m/z 78 and overestimate the peak at m/z 93.
This leads to a similarity score of 569 for OM2 and a somewhat higher match score of 660 for the new GFN1-xTB method. Further methodic
improvements have to be made to increase the quality of the simulated spectra.
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ionization mass spectra can be acquired with photoelectron
photoion coincidence (PEPICO) spectroscopy and can be
coupled with DFT calculations to gain insights into
fragmentation behavior.336−338 In particular, coupling MS
with IR multiple-photon dissociation spectroscopy (IRMPD)
seems to be an excellent way for interpreting dissociation
pathways by combining experiments with quantum chemical
calculations.337 While such instrumental setups are complex
and expensive, they show the possibilities of instrumental
integration with quantum mechanical computations. Such
techniques, while discussed here in detail for EI, can also be
coupled to other methods such as ESI and CID MS/MS.
2.4.4. Collision-Induced Dissociation. Tandem mass

spectrometry (MS/MS) uses one or more mass analyzers
paired with a fragmentation technique that activates and
dissociates ions to identify structural information. The tandem-
in-time concept describes fragmentation processes in ion trap
and Fourier transform ion cyclotron resonance (FT-ICR) mass
spectrometry instrumentation, whereas the tandem-in-space
describes fragmentations in triple-quadrupole (QQQ), quadru-
pole-time-of-flight (Q-TOF), and hybrid instruments.339 The
MS/MS approach is commonly applied to compound
identification in mixtures. In this procedure, a soft ionization
method such as ESI is generally used in the first stage to
generate nearly intact molecular ions from the sample, which
are selected by mass in the first mass analyzer. These ions are
then fragmented via ion activation processes, followed by
subsequent mass analysis to determine their structural
composition. While many other ion activation modes such as
surface-induced dissociation or in-source fragmentation
exist,330 only the most prominent fragmentation method,
CID, also sometimes called collision-activation decomposition
(CAD), is discussed here.
CID was introduced by the Jennings and McLafferty groups

in 1968 as a tool to identify the structures of molecular
ions.340,341 During the 1970s, CID-MS/MS was made
commercially available in a form of sector-MS/MS, and later
triple quadrupole mass spectrometers were developed by Yost
and Enke.342,343 Initially, most experiments were performed
using high collision energies in the keV range, but today,
instrumentation operating in that regime is only used for very
specific research purposes.
In the 1980s, lower energy CID-MS/MS with collision

energies in the 1−100 eV range was introduced by Douglas

and Dawson.344−346 The majority of today’s commercial mass
analyzers operate in the low energy CID mode. The most
common instrumental setups for untargeted profiling of
complex biological samples include ultraperformance LC
coupled to orbital ion trap tandem mass spectrometers
(Orbitrap) or quadrupole-time-of-flight instruments (Q-
TOF). Compound identification for small molecules mostly
relies on database search of low-energy CID-MS/MS
spectra295 or HCD (higher-energy collision dissociation)-
MS/MS spectra from orbital ion traps.
Currently available MS/MS databases are rather small, with

fewer than 500 000 covered compounds, and metabolic
profiling reports still contain many unknown MS/MS
spectra.347 Therefore, a major research topic is the modeling
of high-quality CID-MS/MS in silico mass spectra directly from
compound structures (structure-to-spectrum approach). The
spectral interpretations can provide a better understanding of
the CID fragmentation pathways in unknown CID-MS/MS
spectra (spectrum-to-structure approach).
The CID process can be distinguished into different types:

collision-cell CID, ion trap-CID, and in-source CID.348 During
the collision-cell CID process, ions pass through the collision
cell, a vacuum chamber that is flooded with inert gas such as
helium, nitrogen, or argon, where binary collisions occur in the
gas phase (Figure 15). The collisions within the cell increase
the internal energy of the ions and enhance the rate of the
unimolecular fragmentation reactions that create the product
ions. If the amount of energy transfer is great enough to break
chemical bonds, the ion consequently decomposes into
charged ions and neutral fragments. In the case of collision-
cell CID, an ion makes approximately 10 collisions on average
while traveling through the collision cell within 20 μs; as many
as 100 collisions are possible in ion-trap CID over the
corresponding residence time of ∼5 ms.349,350

Although the entire CID process occurs on time-scales that
are inaccessible by ab initio or even semiempirical MD
methods, it may be possible to use simplified models to
approximate the kinetic energy that is imparted by non-
dissociative collisions that lead up to the dissociative event, in a
similar way to how QCEIMS uses a velocity rescaling to model
the complex energy conversion process from an electronic
excited state to nuclear kinetic energy. Like the case of EI-MS,
there are many possible pathways for collisional activation and
fragmentations across the diverse configurations of CID

Figure 15. Collision-induced dissociation process (CID-MS/MS) in a collision cell. Ions formed by, e.g., electrospray ionization enter the mass
spectrometer and pass a neutral curtain gas (He, Ne, Ar). Once energy is transferred from the collision, molecules can dissociate or rearrange. Ions
are further accelerated toward the detectors and registered as specific m/z signals. The collision gas and neutral reaction products are removed by
the vacuum pumps of the instrument.
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experiments and instrument configurations. Many of them
should be considered during quantum chemical investigations.
2.4.5. Interpretation of CID-MS/MS. The CID-MS/MS

process includes many different fragmentation and rearrange-
ment reactions, divided into charge retention and charge
migration mechanisms.351,352 For quantum-chemistry-based
CID-MS/MS investigations, one can distinguish between
statistical and dynamical models. Specifically, (i) transition
state theory and simulations along the PES and (ii) molecular
dynamics (QM/MM) simulations.353−356

Semiempirical and DFT models have been used in the past
on a number of molecular species to understand CID-MS/MS
dissociations.357−359 For example, the number of bond
cleavages and proton migration events were determined by
semiempirical methods.360 The QC-FPT method was used to
predict thermodynamically feasible fragmentations across a
number of sample molecules.361

The VENUS software, developed by the Hase group at
Texas Tech University, has been extensively used to model
CID MD processes. VENUS has been interfaced with software
tools for semiempirical (MOPAC)362 and DFT calculations
(NWChem).363 Several papers also have shown that MD
simulations can be coupled to the automated reaction
mechanisms and kinetics software AutoMeKin/TSSCDS,
which automatically explores transition states.308,364,365 Be-
cause of the time-consuming nature of the approach, mostly
single molecules such as sugars, sterols, amino acids, and
peptides have been described.365−371

A QM/MM direct dynamics simulation described in a
recent paper further details the modeling of center-of-mass
collisions of argon and galactose-6-sulfate.372 The reaction
process can be visually investigated, including collisions and
formation of multiple fragments. This computational process
with improved statistical sampling can be considered as a
foundation for simulations of CID-MS/MS spectra. Further
details of the historical developments and implementations of
QM/MM methods are comprehensively described in the
excellent book by Song and Spezia.373

2.4.6. Prediction of in Silico CID MS/MS Spectra. As of
2020, no commercially or publicly available quantum
chemistry method exists with the ability to accurately predict
CID-MS/MS spectra from diverse compounds (<1000 Da).
While several heuristic, machine learning, and reaction-based
models can accurately model CID-MS/MS spectra for small
molecules, they usually require experimental training spectra
and are discussed elsewhere.288

Similar to CID fragmentation predictions, classical reaction
mechanism theory as well as QM/MM calculations including
AIMD can be used to predict ions and their abundances. The
QCMS2 approach uses a pipeline of conformational sampling,
protonation, fragmentation rules, and exploration of transition
states along the PES.374,375 Formerly developed for EI-MS, it
has been modified to work for CID predictions.376

A QM/MM chemical dynamics approach, using the VENUS
chemical dynamics software and semiempirical and DFT
calculations, was able to predict fragments and relative peak
abundances of testosterone.366 Another workflow used an
automatic tautomerization network and was subsequently able
to describe a mobile proton model during the fragmentation of
6-O-methylguanine.377 Fragments and relative abundances
were calculated and compared to experimental Orbitrap
HCD-MS/MS spectra. Several efforts have been made to
predict CID-MS/MS spectra for specific target compounds,

mostly with constraints on compound diversity or the
experimental setup.373

While fragmentations may be easily predicted,357,358,378 the
prediction of ions with a low false-positive rate and accurate
prediction of associated ion abundances are still very
challenging.366 In addition, many other aspects of automatic
CID-MS/MS modeling workflow need to be considered, such
as correct sampling of protomer, rotamer, and conformer
samplings, as well as energy distribution and transfer upon
collision with various collisional energy.361,379 Some of these
challenges are further discussed below.
Adduct formationis of high interest for mass spectrometrists

because a multitude of adduct ions such as [M + Na]+, [M −
H]−, or [M + Cl]− are observed during experiments.380,381

Depending on the ionization mode, solvent, and buffer
systems, different ions are formed during the electrospray
process295,382,383 that can strongly influence the MS/MS
fragmentation process and observed product.295,384,385 A
statistical analysis of the NIST database on 80 000 MS/MS
spectra covering 300 possible adduct species showed that
protonation [M + H]+ and deprotonation [M − H]− are the
most commonly observed adducts in ESI. Doubly or higher
charged species are rarely observed in small molecule MS/MS
spectra, but they are very important in proteomics and peptide
sequencing.386,387

Multiple protomer species must be considered in the cases
of complex molecules with diverse ionizable groups.388−390

The selected computational approach must be able to model
intramolecular proton migrations.391 While the best practice
currently is to calculate protomer ensembles using a Boltzmann
distribution,357 experimental investigations have shown that
the observed protomer species might not always be the
thermodynamically favored species.392 The freely available
Conformer−Rotamer Ensemble Sampling Tool (CREST), a
conformer-rotamer ensemble sampling tool based on the
GFN-xTB method, can automatically enumerate and compute
energies of multiple protonation states.379,393 The included
ensemble sorting tool (CREGEN) then performs a Boltzmann
population analysis and ensemble analysis. While all of these
computations are based on the semiempirical GFN-xTB
level.394 Orthogonal techniques such as ion mobility
spectrometry (IMS) can help to understand multiple
protonation sites.395

The modeling of tautomers can also be challenging.396

While tautomers have been observed in many mass
spectrometric experiments,397−400 the formation process is
solvent- and pH-dependent and not fully understood
yet.377,401,402 However, tautomers can be easily enumerated
with commercial and open cheminformatics tools such as
ChemAxon, OpenEye, RDKit, MolTPC, CDK, or
AMBIT.403−406 A fully automatic generation of tautomers
using solvation models and quantum chemistry approaches is
possible with CREST and the XTB software.394,402

The influence of conformer ensembles, rotamers, and
stereoisomers is important for predictions across many
spectroscopic methods. However, MS alone is rarely used as
standalone technology to analyze rotamers or stereoisomers
because additional orthogonal separation technologies such as
GC, LC, or ion mobility allow for better resolution.407 The
consideration of multiple conformers is important for CID
modeling. The existing software for generation of conformer
ensembles for NMR spectral predictions could be used and
integrated into CID modeling workflows.210,408 The freely

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.0c00901
Chem. Rev. 2021, 121, 5633−5670

5649

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.0c00901?rel=cite-as&ref=PDF&jav=VoR


available XTB, CREST, and ENSO software modules are an
excellent starting point to perform such analysis.393

The difficulties of modeling CID-MS/MS spectra are based
on a number of factors, including diverse instrumental
setups,409 different ion activation schemas, and CID-voltage
dependent fragmentations.410 Also, the time-scale of fragmen-
tations are important. Whereas CID collisions are modeled in
the picosecond to femtosecond range, the experimental time-
scale can last up to milliseconds in certain instruments such as
FT-ICR MS.378,411 Modeling a single collision might not be
sufficient because multiple collision events may occur depend-
ing on instrument type.411,412

The developmental focus for the structure-to-spectrum
approach should be on modeling low-energy CID-MS/MS
spectra that match the most commonly used instrument types.
That includes QTOF-type (CID-MS/MS) and Orbitrap-type
(HCD-MS/MS) instrumentation for the small-molecule
communities.413,414 Modeled in silico spectra must contain
accurate m/z values and associated peak abundances. The
quality of prediction needs to be reported by matching
theoretical MS/MS spectra against experimental reference
spectra visualized in head-to-tail view, using cosine, dot-
product, or other mass spectral match scores.295 There are
many public and commercial MS/MS databases, including
MoNA, NIST, METLIN, and mzCloud, that can be used to
obtain experimental reference MS/MS spectra.291 The
publication of opaque approaches should be avoided,
describing methods or software that are neither commercially
nor freely available. In silico spectra should be made publicly
available in electronic (MSP/MGF) format.295,415

Overall, methods for accurate prediction of CID-MS/MS
spectra by quantum chemistry approaches are still in their
infancy. However, current advances for de novo prediction of
MS/MS spectra made by multiple groups worldwide are very
promising, and the topic itself is currently gaining attention
within the quantum chemistry community. Looking even
further into the future, quantum computers will be able to
solve quantum chemistry problems416 and predict molecular
spectra417 at an unprecedented speed and scale. Theoretical
frameworks must be developed and linked to perform
confident spectrum-to-structure and structure-to-spectrum
predictions in the realm of MS to take advantage of this
advance.

3. CURRENT BEST PRACTICES AND KNOWN
SOURCES OF ERROR

3.1. Basic Procedures and Implementation Methods

3.1.1. Containerization and Cloud Computing. Tradi-
tionally, quantum chemists use local HPC resources, including
compute clusters and local data storage. Considering cloud
resources, one should carefully consider a number of aspects:
computing costs, data storage, and data transfer, such as egress
costs (moving data out of the cloud).418 This could result in
substantial charges in cloud computing that have to be covered
by a research budget, whereas local computing is mostly
provided for free or is covered by low-cost contributions. The
NIH Science and Technology Research Infrastructure for
Discovery, Experimentation, and Sustainability (STRIDES)
Initiative is actively investigating cloud storage and cloud
computing with two major partners, Google Cloud and
Amazon Web Services (AWS). The aim is to use cost-. and

industry-leading commercial resources to advance biomedical
research (datascience.nih.gov/strides).
There are many advantages to using commercial cloud

services. Microservices and serverless computations (AWS
lambda) and easy containerization using Docker or Singularity
allow for quick deployments.419,420 Furthermore, horizontal
scaling to thousands of instances is easily possible on the cloud,
while local HPC clusters usually have limitations in available
on-demand compute capabilities. Customizing CPU and
memory use and the use of preemptible instances can greatly
reduce the costs.
While local HPC centers have administrative staff and

programmers, when using cloud services, the user in many
cases also becomes the systems administrator. This can be
initially problematic when setting up scheduling systems such
as Torque PBS or Slurm or the need for setting up complex
networks or cloud data-storage solutions. Finally, licensing
requirements must be cleared with commercial software
providers when hundreds or thousands of instances are
deployed or software is limited in terms of CPU sockets in
use. Here the use of open-source quantum chemistry software,
such as Psi482 and NWChem,84 can be recommended with no
distribution or licensing restrictions.

3.2. Sources of Error and Methods of Correction

The models we use to represent the world are not perfect;
however, quantum chemistry has come a long way in being
able to accurately reproduce many aspects of the natural world.
Even so, errors persist. Below, major sources of errors
computational chemists face when performing quantum
mechanical calculations are addressed. For additional in-
depth discussions on errors in theoretical calculations on
sma l l mo lecu le s , s ee the fo l low ing re f e rences
(135,231,421−423).

3.2.1. Level of Theory. In general, the accuracy of
quantum mechanical calculations improves as the cost
(measured, generally, in terms of computational time) of the
calculations increases. To obtain accurate results without
excessive computational cost, DFT is generally recommended,
as opposed to less accurate but faster levels of theory, such as
HF,424,425 or generally more accurate but time-consuming
levels of theory, such as CCSD.135,231,421,422,426−431 Goerigk
and co-workers, in both their 2017 and 2019 reviews of “the
density functional theory zoo,” stress the importance of
including dispersion corrections, such as D3(BJ) and suggest
using double-hybrid functionals.135,421 However, depending on
the specific research questions to be addressed and the
acceptable error bars that can be tolerated, the well-worn and
too often maligned B3LYP method is often suffi-
cient.231,427,432−434

3.2.1.1. Solvent Effects. Solvation can be represented both
implicitly (with a field) and explicitly (with discrete solvent
molecules included in the calculations). Implicit solvation is a
good starting point because it is much less computationally
demanding than explicit solvation modeling and is frequently
sufficient to calculate desired properties. Explicit solvation
should always be considered, however, if strong intermolecular
interactions are involved, e.g., traditional H-bonding, CH−X,
cation−π etc.231,435 For example, Da Silva et al. found including
four explicit chloroform molecules along with an implicit
chloroform model afforded more accurate 1H chemical shifts
than with the implicit solvent model alone.435 This is but one
representative example.
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3.2.1.2. Questions of Dimerization, Acidity/Basicity,
Heavy-Atom Effects, and Hybridization. The best approach
to modeling the solute is often nontrivial, for example: (i) if a
compound of interest exists as a dimer in solution and must be
modeled as such to reduce error,437 (ii) if the protonation state
of a compound is difficult to predict and multiple protonation
states must be modeled,436 (iii) if the effects of intramolecular
noncovalent interactions on a particular property are over-
estimated in the calculations an error that potentially can be
reduced through randomly averaging out free energies of the
conformers as recommended recently by Sarotti and co-
workers,438 or (iv) if the properties of individual atoms, such as
labile protons (Figure 16) or atoms next to heavy atoms, which
suffer from relativistic effects, require specialized meth-
ods.231,439 For example, Kutateladze and Reddy were able to
reduce this latter error by accounting for spin−orbit effects by
developing the DU8+ method to predict accurate 13C chemical
shifts for 13C−X carbons. With this technique, they were able
to correct the structures of numerous natural products with the
misassigned configurations or halogen positions, as in the case
of tristichone C (Figure 17).439 Another method used to

account for errors specific to atom types is the multistandard
approach that has been used to reference different 13C or 1H
chemical shifts based on the hybridization of the carbon
atom.440,441 Overall, the more accurately a chemist can model
what is occurring in the physical sample that is measured, the
more accurately they will be able to predict the chemical
properties of their system. Determining what is occurring in a
sample from the empirical data, however, generally relies on
the chemical intuition of the analyst.

3.2.1.3. Conformational Searching. Conformational space
increases rapidly with degrees of freedom in small molecules,
and as such, determining all relevant conformers becomes
increasingly difficult as the number of atoms increases.434

Often, errors are particular to the software and/or conformer
generation algorithms used. Traditional approaches, including
the use of simulated annealing442,443 or brute force sampling
methods,444 can introduce errors because these are generally
carried out using nonquantum mechanics methods.445 For
example, when searching for conformers of strained rings with
some methods, only conformers with the same dihedral angle
sign as the original input structure will be found in the
conformational search.446 A new conformational searching
method created by Grimme et al., CREST, provides a fast
alternative method that addresses this and other errors found
in traditional conformational searching methods.210,445,447 This
method, while it does not always provide the most accurate
conformer population, often provides adequate sampling of the
conformational space and is freely available on Github.

3.2.1.4. Energy Calculations. Calculating accurate relative
free energies of unique conformations is important to correctly
predict most properties of small molecules because small
differences in free energy correspond to large differences in
observed conformational populations (ΔG = −RT ln K)438,448

and, by extension, the property of interest. Although DFT is
often used to calculate a variety of chemical properties,
Bootsma and Wheeler recently brought to light the problem
that the orientation of an initial molecular structure for an
optimization calculation can drastically affect the resulting free
energy of that compound if the integration grid (i.e., the
number of points sampled) used is too small. With a large
enough grid size (e.g., 99 590 or greater), this error can be
reduced to 1 kcal/mol or less,449,450 so using such a grid is
suggested for quantum chemical calculations in gener-
al.407,408,427,449,450

3.2.1.5. Boltzmann Averaging, Conformational Weight-
ing, Conformational Analysis. When performing conforma-
tional analysis, depending on the chemical system and
properties of interest, a single low energy conformer may be
all that is required to arrive at accurate predictions. For more
flexible systems, Boltzmann averaging is commonly used to
combine per-conformer properties based on the relative
populations of these conformers. This approach involves
giving a weight to the properties for each conformer with
relative free energies within ∼3 kcal/mol of the lowest energy
conformer (for room temperature calculations).231 However,

Figure 16. Effects of a labile carboxylic acid proton on 1H and 13C chemicals shifts.436 Reproduced with permission from MDPI (2017, CC-BY 4.0
license).

Figure 17. Structural reassignment of the natural product, tristichone
C by Kutateladze and Reddy using their DU8+ method.439 Reprinted
with permission from ref 439. Copyright 2017 American Chemical
Society.
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the errors in the free energy calculations for each conformer,
which are affected by the level of theory, temperature, and
solvent model used, can be large enough to significantly affect
properties predicted based on this weighting.135,238,451,452

Consequently, alternative methods are becoming increasingly
employed, such as the Computer Aided Structure Elucidation-
3D (CASE-3D) method or the random ensemble meth-
od.438,448

3.2.2. Sources of Error Specific to Techniques.
3.2.2.1. NMR. Computational prediction of NMR chemical
shifts and coupling constants has become an invaluable tool for
the structure elucidation of natural products.231,432−435,453−456

Linear Regression: Simply referencing chemical shifts to a
single standard (e.g., TMS for organic, nonpolar, solvated
samples; sodium trimethylsilylpropanesulfonate, i.e., DSS, for
water or polar solvated samples) can introduce inaccuracies, so
linear scaling factors are often used instead to convert isotropic
shielding constants to chemical shifts.231 Scaling factors for 1H
and 13C,231,235,238,457 11B,458 15N,458 19F,459 31P,460 13C−X,439
and 1H−1H J-couplings461 are available to reduce systematic
error. Many scaling factors and instructions on how to use
them are freely available on the CHESHIRE (CHEmical SHIft
REpository) Web site (cheshirenmr.info).231 While linear
regression allows for accurate scaling in most cases, the
multistandard approach or the use of secondary linear
regression lines can be used to improve accuracy for specific
types of atoms.238,440,441

3.2.2.2. pH Effects on Chemical Shifts. pH of the NMR
solution also can affect chemical shifts.435,462,463 How best to
model a compound when this is an issue is unclear, although
improved predictions have been made by explicitly modeling
solvent or acid molecules.435,462,463

3.2.2.3. IR/Raman. In IR calculations, anharmonicity can
introduce a significant source of error depending on how it is
calculated (if at all). The generalized second-order vibrational
perturbation theory (GVPT2) is recommended and often used
to reduce the effects of Fermi resonances resulting from
anharmonicity if highly accurate IR spectra are needed.427,437

3.2.2.4. CD. Circular dichroism is again dependent on
correct conformational analysis.434,452,464 In addition, as for
NMR, a scaling approach can be applied, here using a
wavelength correction.434

3.2.3. Limitations and Challenges. As far as quantum
mechanical calculations have come in recent years for structure
elucidation and small molecule identification, they are limited
by the quality of the experimental data obtained for
metabolomics studies. Thus, a movement has been made
toward including raw data and error bars in publications to
allow for better analysis and comparison of scientific
data.423,465 Even with excellent experimental data, the
computational chemist is limited by time and resources.
With the technology currently available, cyclopeptides with five
or so residues represent a practical size limit for accurate DFT-
based computations.466−470

Other than size, strong inter- or intramolecular interactions,
both charged and uncharged, can create challenges in
producing accurate theoretical results. Even the seemingly
simple question of protonation/deprotonation is often
complicated to model appropriately.436 Because of these
factors and the time involved in DFT calculations, automated
structure elucidation with NMR spectroscopy is gaining
popularity and can be a good starting point for metabolite
identification, although it is recommended to confirm the

results with quantum chemical calculations. Some popular
methods include CASE,471−473 WebCocon,474,475 and Logic
for Structure Determination (LSD).476

3.3. Validation Methods

3.3.1. Statistical Verification with Large Data Sets.
Statistical verification for quantum chemical calculations is
becoming increasingly popular for DFT calculations of energy.
While optimizations performed at efficient levels of theory can
provide accurate conformational minima, they often have
difficulties accurately predicting relative free energies. Includ-
ing a statistical component, as with the DP4/DP4+ and related
methods, allows one to assess the likelihood of a specific
structural assignment being the correct one out of a group of
defined possible structures;228,467 however, it should be noted
the DP4+ method does not always suggest the correct
stereochemical assignment.456

A recently published method, the In Silico Chemical Library
Engine (ISiCLE),265 has shown promise in structure
determination using NMR, IR, and CCS predictions and has
performed well in large-scale compound identification tests,
such as the ENTACT interlaboratory challenge.248 This
method, which can be used as a cross-validation method,
aims to provide a means for structure prediction without
standards, a major advantage to rapidly accelerating compound
identification.265

3.3.2. Cross Validation. Cross validation with multiple
methods can help one avoid errors. For example, comparing
results from Boltzmann averaging with Sarotti’s recently
introduced random ensemble method can reduce errors.438

Scaling factors are generally cross-validated with a second set
of compounds after they are calculated from a test set.231 In
the long run, “consensus scoring,” which is frequently done in
fields like automated ligand docking, may have an important
role to play in compound identification.

4. OUTLOOK FOR ROLE IN METABOLOMICS

4.1. Advancing Standards-Free Metabolomics

Most metabolomics studies use databases with known
experimental MS or NMR data obtained from analyses of
standard compounds. Such databases are useful but do not go
beyond known metabolites. The problem is that a very large
number of metabolites are not represented in databases.
Identification of such unknowns requires considerable
experimental effort using approaches employed in natural
products chemistry.60 Furthermore, the number of purified or
synthesized chemicals that are available for traditional database
construction will always be a limitation. We believe that
computational methods, most specifically those based in
quantum mechanical calculations (and eventually coupled to
deep learning and quantum computing approaches), can
provide considerable help in the identification of unknown
compounds.
Using high-level calculations like those outlined in this

perspective, QM calculations could be accurate substitutes for
experimental data. In fact, QM is a hallmark for high
confidence spectroscopic (and spectrometric) simulations,
and it has been proved to produce reliable results enabling
structure confirmation,477,478 distinction between isomers,479

and to point out wrong assignments from peer-reviewed
publications.480,481 One advantage of using QM calculations
for database entries is that they can be applied to several
experimentally accessible measurements including retention
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time, MS/MS fragmentation, collisional cross section, and
NMR data. One rapidly growing application area that has yet
to incorporate standards-free and QM calculation-based
identification methods is metabolomics imaging. MS imaging,
specifically, has historically utilized m/z features alone for
putative identifications, but as MS/MS and IMS are
increasingly incorporated into these analyses,482−487 in silico
libraries may help to accelerate the usefulness and impact of
metabolomics imaging research by providing high confident
metabolite identifications.
For NMR data, most experimental databases rely on

chemical shift values, but other experimental measurements
are highly informative, especially J coupling constants. Both
chemical shifts and J couplings can be computed and could be
used in matching experimental data. Several types of NMR
experiments can be used to measure homo- and heteronuclear
scalar coupling constants through one or more bonds,488 and if
the data could be effectively used, then it could be more
routinely measured in a metabolomics workflow. Currently,
unknown identification of molecules perhaps relies too much
on the chemical shift alone. This is especially problematic
given that 1H chemical shifts can be dependent on several
variables including solvent, pH, ions, and temperature. Other
nuclei, including 13C,489 are less dependent on these variables.
A combination of computed 1H and 13C chemical shifts, along
with J coupling values, would be very valuable for increasing
our confidence in unknown metabolite identification. This type
of information is now available through QM calculations
coupled to spin dynamics simulations.490,491

While it would be useful to have a large database of results
from high-level QM calculations of metabolites and other small
molecules, that is still impossible because of the time required
for each calculation, especially for flexible molecules that
require conformational averaging. Prioritizing which com-
pounds to calculate is a challenging question. The Brüschweiler
lab has developed an interesting approach called Structure of
Unknown Metabolomic Mixture components by MS/NMR
(SUMMIT) that combines high-resolution MS and NMR data
with computation.492 In SUMMIT, high-resolution MS data
are used to determine the molecular formula of an unknown
peak of interest. Next, a database of known structures such as
Chemspider493 is used to generate all possible molecules
consistent with the experimental molecular formula. Then,
NMR chemical shifts are computed for each potential
molecule, and computational results are compared with
experimental NMR data of the same sample. The primary
difficulty with the SUMMIT approach is the large number of
possible molecules as the molecular weight increases. There are
at least two approaches to deal with this problem. First, one
could use lower-level theory that could be effectively applied to
hundreds or thousands of candidates. However, as the level of
theory decreases, so does the accuracy of the calculation, so
matching the correct one against experimental data would be
difficult. Another idea is to add an additional layer of filtering,
such as additional chemical data such as CCS or biological/
genetic knowledge of pathways. if genomic data can be
incorporated and related to the unknown feature of interest.
QM simulations of spectroscopic data of organic compounds

is ripe to be used for compound identification within
metabolomics. Of course, this application will only be really
accomplished if a standardized protocol is adopted and an
open-access computational database is established. Further-
more, experimental advances are required to make cryogenic

gas-phase spectroscopy commercially available, which would
offer an ideal pairing with QM calculations. Foreseeing the
future advancement of quantum computers, one can easily
expect a huge development in high-level spectroscopic
simulations. Computing time will be reduced in orders of
magnitude and an increasing number of variables (such as
solvent, temperature, pH, matrix effects, etc.) could be
implemented within the calculations. Thus, to have a seed
already in place for a community-driven effort to catalogue
simulated data in a common database will be a shortcut for the
success of many other life-sciences-based studies.

4.2. Comparison to Machine and Deep Learning

Recent advances in deep learning494−496 have shown promise
in predicting physiochemical properties previously reliant on
quantum chemical calculations, such as CCS, NMR chemical
shifts, and MS fragmentation patterns,209,497−500 as well as
replacing quantum chemical calculations entirely.501−504 Deep
learning has demonstrated improvements in property pre-
diction accuracy compared to quantum-chemistry-based
approaches, while reducing per-structure computation time
by orders of magnitude (hours for quantum chemical, versus
milliseconds with deep learning after training).497,505 Similar
improvements are seen with deep-learning-based DFT: orders
of magnitude reduction in computation time with sub-1%
MAE.502 For generative approaches, including autoencoder
and adversarial networks,505−516 deep learning offers additional
potential in addressing the inverse quantitative structure−
property relationship (QSPR) problem,517−519 wherein mo-
lecular structure candidates can be determined from
physiochemical property/properties. However, with deep
learning follows considerations to training time, which better
contextualizes per-structure computation time, and general-
izability, or to what extent does prediction accuracy degrade as
inputs vary from the training set.

4.2.2. Generalizability. The greatest concern when
evaluating deep learning models against first-principles
approaches is generalizability, the model’s ability to operate
successfully outside of the data set on which it was trained.
With first-principles approaches, calculations are based on the
underlying physics of the quantum-chemical system and are
thus less biased to the structures seen, or not seen, during
training. As such, a completely novel structure, when simulated
by a first-principles approach, is beholden to low-level physical
constraints/laws. A spurious prediction is unlikely, as the
underlying physics remains constant across chemical space,
both known and, presumably, unknown. With a poorly
generalized deep learning model, an evaluated structure that
exists outside the space defined by the training set may not
have a robust basis for prediction, for example, either returning
the average of the training set or a near-random result.
Therefore, it is important to sufficiently cover chemical

space such that the probability of an out-of-sample compound
significantly differs from the networks internal representation
of structure/property is minimized. Given estimates of up to
1060 potential unique structures, and that the union of all
public databases amounts to only a few billion unique
structures, complete chemical space coverage with current
chemical knowledge cannot be guaranteed.520−523 However, a
wide range of properties, both empirical and qualitative, can be
sampled to ensure coverage of descriptors used to define a
chemical subspace. In deep learning applications in property
prediction,506−516 data are curated to represent a wide
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sampling of chemical space, relevant to the domain of
application, and additional measures (cross validation,
checkpointing, early stopping, learning rate decay) are taken
to minimize overfitting, together maximizing model generality.
As a result, the validation error, the error among predictions
withheld for evaluation purposes, is only slightly higher than
among predictions from data the model was trained on. This is
promising as an initial assessment of the generality of such
models, but as chemical space is further expanded and
characterized, models should be continuously evaluated.
4.2.3. Computation Time. While per-structure computa-

tion time improves substantially when comparing deep
learning to quantum chemical calculations, it is important to
contextualize with required training times, which vary based on
complexity of the considered network and the number of
training examples. Other considerations, such as cascade or
transfer learning configurations, additionally contribute to an
increase in total train time. For example, a network with 5.6
million trainable parameters, trained on over 50 million
chemical structures gleaned from several public databases,
including PubChem,524 UNPD,525 HMDB,526 and DSSTox,527

and a curated data set with ∼500 experimental CCS values
(metabolomics.pnnl.gov), requires approximately 123 h of
training on a single Nvidia Tesla V100 GPU.
This compares first-principles approaches for CCS pre-

diction,497,499,500 which require on the order of hours per
structure on a dual-socket Intel Haswell E5-2670v3 CPU. For
example, employing the B3LYP exchange-correlation func-
tional528−531 and 6-31+G** basis set532,533 for DFT
optimization alone requires, on average, approximately 1
node-hour per conformation sampled. Propertion prediction
methods involve 10 s to 100 s of conformations, rapidly
increasing the per-molecule computation time. Of course,
relaxing the level of DFT theory reduces computation time,
although at a penalty to accuracy. This speedup extends to
other physiochemical properties in which deep learning has
been applied, i.e., for NMR chemical shifts210,243,534,535 and MS
fragmentation patterns.536 IR spectral prediction has yet to see
a deep learning solution, but we would expect computation
time to follow similar trends.
Thus, although training via machine learning requires

substantial computational resources up front, we remember
that, once trained, each structure can be processed on the
order of milliseconds, motivating deep learning use when
computational efficiency is of chief importance, e.g., when
building massive in silico libraries.
4.2.4. Accuracy. Among evaluated in silico prediction

pipelines for CCS prediction, the best performing method
resulted in an average unsigned error of 3.2%, with other
methods achieving around 5% error when evaluated on the
same structures. This error was achieved using the B3LYP
exchange-correlation functional and 6-31+G** basis set.
Higher levels of theory have been shown to reduce this error
by up to 70%, but at a 2 orders of magnitude increase in
computation time.497 In contrast, deep learning has been
employed to reach an average error of 2.4%, or a 25%
reduction compared to first-principles approaches. Similarly,
generative deep learning approaches for use in inverse QSPR
applications, although sacrificing in property prediction
accuracy, still improve over first-principles simulation with an
average error of 3.0%.505

In applications involving NMR chemical shifts, deep,534 and
machine243 learning approaches were able to achieve MAE of

0.37 and 0.28 ppm for 1H shifts, respectively, and 3.3 and 3.9
ppm for 13C shifts, respectively. These methods have not yet
reached the accuracy provided by quantum chemical
calculations, wherein MAE for 1H and 13C predictions can
be <0.1 and <1 ppm, respectively.204

With respect to mass fragmentation pattern prediction, most
machine learning solutions have been developed for peptide
fragment prediction and produce high accuracy results (up to
0.99 Pearson correlation coefficient with experimental
spectra).537−541 Of course, fragmentation pattern prediction
of metabolites represents additional challenges, and these
results are thus not directly comparable. Unfortunately, the
number of deep or machine learning approaches to metabolite
fragmentation pattern prediction is limited. Brouard et al.
implemented an input/output kernel regression technique and
compared to a commonly used fragment prediction tool:
CSI:FingerID.536 Results indicated minor improvements over
existing techniques, representing a 1−2% increase in top-k
accuracy (37.8, 69.7, and 78.4% versus 36.0, 67.5, 76.5% for top
1, 5, and 10 accuracy, respectively, in positive ionization
mode).

4.2.5. Inverse QSPR. An advantage to deep learning
approaches, specifically those involving generative models, is
their usefulness in inverse QSPR applications. The inverse
QSPR problem involves determining a putative structure (or
structures) based on chemical properties, for example,
determining the structures that correspond to a given
experimental m/z and some combination of CCS, NMR
chemical shifts, IR spectra, and/or mass fragmentation pattern.
With a variational autoencoder, for example, the network
learns a continuous numerical, or latent, representation of the
modeled structure.542 Those dimensions of the latent
representation determined to be uncorrelated with the
properties of interest can be traversed to yield putative
structures. Thus, the uncorrelated dimensions are varied, yet
those correlated with the properties of interest remain largely
invariant.
Under this framework, experimental features can be used to

identify matching in-sample structures within a tolerance.
These seed structures can then be perturbed as discussed to
yield new structures with matching experimental signatures.
This method does not solve the inverse QSPR problem
because there is no guarantee the “true” structure will be
generated. However, this method offers the ability to generate
putative structures previously limited to those found in
databases for use in high throughput virtual screening and
similar approaches.

4.2.6. Interplay. Importantly, first-principles simulations
and deep learning models can be leveraged for mutual benefit.
Often, experimentally derived chemical properties of pre-
diction interest are limited; for example, the union of all
publicly available experimental CCS values contains only a few
thousand unique structures. Training on such a limited data
set, particularly when employing a large neural network, results
in susceptibility to overfitting effects and, by extension,
negatively affects generality. Instead, first-principles approaches
can be used to expand the number of training labels, albeit with
associated error, to gain broader chemical space coverage.
Training can then be performed on the in silico values initially,
followed by a round of experimental “fine tuning” to correct for
the inherent error modeled from the in silico data. This allows
for training on significantly larger data sets than would be
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possible with experimental values alone, the model thus
learning from a broader sampling of chemical space.
Equally useful is the use of deep learning in an in silico

property prediction pipeline, particularly used to replace
computationally expensive quantum chemical calculations,
e.g., DFT. Under this paradigm, quantum chemical simulations
are used to solve electronic structures of molecules for use in a
training set. Deep learning is then leveraged to predict
electronic structures from representations of atom types,
positions, and chemical environments amenable to consump-
tion by a neural network. Although data sets have thus far been
fairly limited, in both size and complexity, initial results show
promise with MAE less than 1%.502

In addition, a cascade of techniques can be combined for
virtual high-throughput screening, i.e., initially down-select
chemical space based on machine-learning-predicted proper-
ties, verify putative structures and associated properties with
quantum mechanical simulations, and confirm by experimen-
tation. This paradigm represents a path from low cost, high
throughput to high cost, low throughput, enabling researchers
to efficiently use both computational and experimental
resources.
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ABBREVIATIONS

AIMD = ab initio molecular dynamics
AWS = Amazon Web Services
BOMD = Born−Oppenheimer molecular dynamics
CAD = collision-activation decomposition
CASE = computer aided structure elucidation
CCS = collision cross section
CD = circular dichroism
CE = capillary electrophoresis
CID = collision-induced dissociation
CIS = configuration interaction singles
DFT = density functional theory
EI = electron ionization
ESI = electrospray ionization
FDA = U.S. Food and Drug Administration
FF = force field
FTICR = Fourier transform ion cyclotron resonance
GC = gas chromatography
GRRM = global reaction route mapping
HMDB = Human Metabolome Database
HPC = high-performance computing
IEE = internal excess energies
IMS = ion mobility spectrometry
IP = ionization potential
IR = infrared
IRIS = infrared ion spectroscopy
IRMPD = infrared multiple-photon dissociation spectros-
copy
ISiCLE = In Silico Chemical Library Engine
KS-DFT = Kohn−Sham density functional theory
LC = liquid chromatography
LSD = logic for structure determination
MAE = mean absolute error
MC = Monte Carlo
MD = molecular dynamics
ML = machine learning
MO = molecular orbital
MS = MS
MS/MS = tandem MS
MSI = Metabolomics Standards Initiative
NMR = nuclear magnetic resonance
PEPICO = photoelectron photoion coincidence
PES = potential energy surface
PKU = phenylketonuria
QCEIMS = quantum chemistry electron ionization MS
QET = quasi-equilibrium theory
QM = quantum mechanical
QQQ = triple-quadrupole
QSPR = quantitative structure−property relationship
Q-TOF = quadrupole-time-of-flight
RRKM = Rice−Ramsperger−Kassel−Marcus
SUMMIT = structure of unknown metabolomic mixture
components by MS/NMR
TD-DFT = time-dependent density functional theory
TMS = trimethylsilyl
TOF = time of flight
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