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ABSTRACT: Developing a sufficiently accurate classical force field
representation of molecules is key to realizing the full potential of
molecular simulations as a route to gaining a fundamental insight into a
broad spectrum of chemical and biological phenomena. This is only
possible, however, if the many complex interactions between molecules
of different species in the system are accurately captured by the model.
Historically, the intermolecular van der Waals (vdW) interactions have
primarily been trained against densities and enthalpies of vaporization
of pure (single-component) systems, with occasional usage of
hydration free energies. In this study, we demonstrate how including
physical property data of binary mixtures can better inform these
parameters, encoding more information about the underlying physics
of the system in complex chemical mixtures. To demonstrate this, we retrain a select number of Lennard-Jones parameters describing
the vdW interactions of the OpenFF 1.0.0 (Parsley) fixed charge force field against training sets composed of densities and
enthalpies of mixing for binary liquid mixtures as well as densities and enthalpies of vaporization of pure liquid systems and assess the
performance of each of these combinations. We show that retraining against the mixture data improves the force field’s ability to
reproduce mixture properties, including solvation free energies, correcting some systematic errors that exist when training vdW
interactions against properties of pure systems only.

■ INTRODUCTION

Atomistic molecular simulations are a popular and effective
method for examining biomolecular systems in silico, revealing
molecular insights into protein folding, protein−ligand binding,
membrane transport, and many other phenomena. For many of
these use cases, quantitative accuracy is required for meaningful
predictions. One critical example is binding free energy
calculations for protein−ligand compounds. These calculations
are an important step in the computational drug discovery
process, but are only useful to medicinal chemists if predictions
are sufficiently accurate and rapid.1 Consequently, there has
been much interest in producing improved parameter sets for
the simple fixed charge functional forms common to most
modern force fields. One key type of parameters are the
parameters that specify the Lennard-Jones (LJ) interaction
terms, which are used in standard organic and biomolecular
force fields to capture the short-range attractive and repulsive
non-bonded interactions that drive many important biomolec-
ular processes.
The simplest method for obtaining LJ parameters is

estimation from experimental correlations,2 as in the original
CHARMM3 andGROMOS4 force fields. This method has a low
computational overhead but very limited accuracy. Training LJ
parameters against experimental properties is more computa-

tionally expensive, but became the predominant method in
small-molecule force fields, facilitated by the increase in
computational power required to simulate those properties.
This method has been used by many force fields, including
OPLS,5 CGenFF,6 GAFF,7 and GROMOS.8 The dominant
parameterization paradigm is to train the LJ parameters against
liquid density (ρl) and heat of vaporization (ΔHvap) measure-
ments, as in the original OPLS parameterization by Jorgensen et
al.9 These two physical property targets are used because they
are simple to calculate from simulations,10 are dependent on the
molecular volume and attractive forces, and together constrain
the LJ ϵ and σ parameters better than they do individually.
Densities and enthalpies are related to the derivatives of free
energy with respect to volume and temperature, respectively;
accurately reproducing the free energy is the target for most
force fields. We note that while this is the dominant choice,
alternatives exist; notably, the GROMOS 53A68 and 2016H6611
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force fields both use solvation free energies in addition to ρl and
ΔHvap. Additionally, ab initio calculations can be used to inform
parameterization, for example, using rare-gas interaction
energies and geometries to produce initial parameter estimates
subsequently refined with physical property data.12,13 More
recently, methods to produce LJ parameters entirely from ab
initio data, using atom-in-molecule electron density partition-
ing,14,15 or the exchange-hole dipolemomentmodel16 have been
proposed. Still, parameterization against small-molecule ρl and
ΔHvap is the dominant paradigm.17,18

Training against ΔHvap in particular has some problematic
aspects. Using fixed charge force fields, predictions of ΔHvap
require performing simulations in both the liquid phase and gas
phase, which means that the same parameters must capture two
different polarization states19,20 to reproduce experimental
measurements of ΔHvap. There has been significant discussion
on how to account for this polarization cost, which also arises in
the calculation of hydration and solvation free energies.20−22

Methods suggested include calculating an explicit polarization
cost20 or using semipolarized charges,14,23 but the issue has not
been definitively resolved. Additionally, some compounds, such
as acids, can form clusters in the gas phase,24,25 which are not
generally represented in gas-phase simulations used to predict
ΔHvap.
Another major issue is the availability of modern experimental

ΔHvap data. The NIST ThermoML Archive26 is the one of the
largest open databases for physical property measurements and
contains roughly 500 total ΔHvap data points, where a “data
point” in this context is defined as an experimental measurement
for a specific compound at a given temperature T, pressure p,
and mole fraction x. In contrast, the ThermoML Archive
contains over 60,000 measurements of pure densities. The
ThermoML Archive is certainly not the only location of ΔHvap
data (it lacks data prior to the year 2003, and many
measurements of ΔHvap date to the mid-20th century), but it
is challenging to obtain uncertainty estimates,27 rigorous
provenance,28 or fully computer-readable forms for these older
measurements. This makes it difficult to systematically vet the
experimental procedures and outputs when curating large-scale
datasets for parameter optimizations.
The limitations of parameterizing intermolecular interactions

based off of pure properties alone have been noted previously;
given two molecules A and B, accurate prediction of A−A
interactions and B−B interactions does not imply accurate
prediction of A−B interactions. SimulatedΔHvap measurements
for A and B, calculated as in eq 1, can measure the cohesive
energies of A−A and B−B systems, but are unlikely to capture A-
B interactions unless A and B are very similar molecules. In eq 1,
ΔV refers to the difference in molar volume between the liquid
and gas phases.

H U U P Vvap gas liquidΔ = ⟨ ⟩ − ⟨ ⟩ + Δ (1)

Another illustrative example is the work of Kamath et al.29 on
azeotropes of acetone/methanol and chloroform/methanol
systems, where force fields that accurately reproduced the
pure components of these systems were unable to predict the
azeotropic phase behavior until reparameterized against
simulation of those mixture systems. In addition, statistical
associating fluid theory30 (SAFT) can be used to predict the
behavior of mixtures; in particular, the SAFT-γ group
contribution method has been used by Mueller and co-
workers31−34 to produce coarse-grained force fields for
molecular fluid simulations and accurately predict the behavior

of mixtures.33 Another important example is the Kirkwood−Buff
Force Field35−37 of Smith and co-workers, which aims to achieve
better treatment of solute−solvent interactions by capturing the
concentration-dependent activities via Kirkwood−Buff
theory.36 Using Kirkwood−Buff integrals, the macroscopic
activity can be related to microscopic solution structures
obtained from simulations. Their efforts have focused on
adjusting charge parameters, along with some LJ parameters, to
match Kirkwood−Buff integral values and better capture
solute−solvent interactions. This method has been used to
parameterize a wide range of systems, from simple systems35 to a
complete protein and peptide force field.38

For a fixed charge small-molecule force field geared toward
biomolecular systems in the heterogeneous condensed phase,
our approach to capturing mixture interactions must be general,
transferable, and focused on the LJ parameters, as charges for
small-molecule ligands are often generated from semiempirical
methods such as AM1-BCC rather than being determined a
priori. To ensure transferability, we need high-quality sources of
diverse data to train against. Therefore, properties of mixtures
such as the densities (ρl(x)) and enthalpies of mixing
(ΔHmix(x)) of binary mixtures are an attractive alternative to
the properties of pure systems for several reasons:

1 Properties of mixtures, especially mixtures that deviate
strongly from ideality, are sensitive to interactions
between functional groups that are not generally present
in the pure substances used to train LJ parameters.39,40

Calculated as in eq 2, simulated enthalpies of mixing
directly capture the A−B interactions that enthalpies of
vaporization miss. This is especially important for
capturing solute−solvent interactions.

H x x H x H x H( , )mix 1 2 mix 1 1 2 2Δ = − − (2)

2 The nature of mixture data allows users to more easily
include a diverse spectrum of interactions in their training
sets. For example, mixtures of drug-like molecules with
pharmaceutically relevant solvents or amino acid
analogues can in principle be readily included in training
sets to allow the LJ parameters of solvents, ligands, and
biopolymers to be self-consistently trained.

3 Although computing some properties of mixtures may
require multiple simulations, most such properties
(including those studied here) do not require simulations
in different phases, minimizing error caused by polar-
ization differences. There may be some difference in
polarization of molecules between more polar and less
polar liquids, but this difference is significantly less than
the difference between two phases, especially because
liquid mixtures are, by definition, miscible and the
components must therefore have dielectric constants
that are not completely dissimilar.

4 Including mixture data adds the ability to vary training set
data by composition; data points can be selected at (T, P,
x) rather than just (T, P), probing the balance between
pure and mixture interactions.

5 Many data points for mixture properties are available in
modern sources such as the ThermoML Archive. In
particular, binaryΔHmix(x)measurements aremuchmore
abundant in the ThermoML archive compared to pure
ΔHvap. For the moieties and conditions of interest in our
study, there are 382 binary mixtures with ΔHmix(x)
measurements (generally available at multiple concen-
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trations), compared to 24 single-component ΔHvap
measurements that fit the same criteria. For density
measurements, both mixture and pure component data
points are relatively abundant, with 4000 data points for
pure substances and 900 binary mixtures matching our
criteria. We estimate that there is sufficient binary mixture
training data to parameterize small molecules containing
carbon, hydrogen, oxygen, nitrogen, chlorine, and
bromine.

In this study, we aim to rigorously assess whether it is more
beneficial to train the intermolecular LJ parameters of a force
field on solely pure substance data, binary mixture data, or a
combination of both, with an emphasis here on density-related
properties (ρl, ρl(x)) and enthalpic properties (ΔHvap,
ΔHmix(x)). A combination of density and enthalpic data should
be generally sufficient to constrain the LJ σ and ε parameters,
with densities providing the most information about σ and
enthalpic properties providing information on ε via the cohesive
forces between molecules, though there is of course some partial
cross-correlation between parameters.41

Starting with the OpenFF 1.0.0 (Parsley) force field,42 we use
this data to train 12 LJ parameters (σ and ε for 6 LJ types)
against data for alcohols, esters, ethers, ketones, acids, and
alkanes, with property measurements chosen from four training
sets containing different combinations of physical properties. To
test the performance of the refitted force fields, we benchmark
the results of this optimization against a larger test set of physical
property measurements for the same moieties, consisting of
ρl(x), ΔHmix(x), ρl, and ΔHvap measurements.

■ METHODS
Optimization Strategy. The studies proposed are con-

structed with the following workflow, as shown in Figure 1.

1 Sourcing a training set of molecules and selecting
particular measurements for each molecule (or pair of
molecules) of interest.

2 Optimizing only the selected LJ parameters against the
training set using ForceBalance43 in combination with the
OpenFF Evaluator framework,44 starting from the
OpenFF 1.0.0 (Parsley)45 force field parameters.

3 Assessing the performance of the trained force field
against a test set of measurements using the OpenFF
Evaluator framework.

The goal of the study was to assess whether training the LJ
parameters against properties of mixtures, as well as combina-
tions of pure/mixture properties, is more beneficial than training
against properties of pure systems. Other force field parameters,
namely the valence and electrostatic parameters, were not
optimized.

Organic Mixture Studies. We selected four combinations
of physical property data types (densities of pure compounds
and binary mixtures, heats of vaporization of pure compounds,
and enthalpies of mixing of binary mixtures) to optimize against
(shown in Table 1).

1 [ρl, ΔHvap] (“pure only”): includes only density ρl, and
enthalpy of vaporization ΔHvap, data points. This is the
type of training set that has most commonly been used5−7

for training the non-bonded interaction force field
parameters, and is therefore included as a historical
baseline.

Figure 1. LJ optimization workflow used in this study. A training dataset consisting of physical propertymeasurements for organicmolecules is selected
from the NIST ThermoML database (supplemented with hand-selectedΔHvap data). Starting with the OpenFF 1.0.0 (Parsley) force field, the physical
properties in the training dataset are estimated using the force field and the OpenFF Evaluator software package. LJ parameters are then adjusted by
minimizing the difference between the simulation results and experimental training data via a regularized least-squares procedure as implemented in
the ForceBalance package.43

Table 1. Four Training Sets Containing Different
Combinations of Pure and Mixture Data Were Considered in
This Studya

properties included

pure properties mixture properties

training data set ρl ΔHvap ρl(x) ΔHmix(x)

“pure only” Yes Yes No No
“mixture only” No No Yes Yes
“mixtures + pure density” Yes No Yes Yes
“pure and mixture” Yes Yes Yes Yes

aThese training sets are composed of measurements of pure-
component liquid density (ρl), pure-component enthalpy of vapor-
ization (ΔHvap), binary mixture densities (ρl(x)), and binary
enthalpies of mixing (ΔHmix(x)). These measurements cover a set
of alcohols, esters, ethers, ketones, acids, and alkanes, which is further
described in Figures 2 and 3. The four training sets in this study are
labeled based on which of these measurements are included.
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2 [ΔHmix(x), ρl(x)] (“mixture only”): includes only
density ρl(x) and enthalpy of mixing ΔHmix(x) data
points measured for binary mixtures. This data set allows
us to explore whether mixture data alone is sufficient to
constrain the non-bonded force field parameters during
training, and if a force field trained without pure
compound data points will be able to accurately
reproduce pure compound data.

3 [ΔHmix(x), ρl(x), ρl] (“mixtures + pure density”): a
combination of ρl(x), ΔHmix(x), and ρl data points. This
extension of the “mixture only” training set is included to
explore whether including the density of pure systems
helps to constrain the optimization, or whether ρl(x)
alone is sufficient.

4 [ΔHmix(x), ρl(x), ρl, ΔHvap] (“pure and mixture”): a
combination of the “pure only” and the “mixture only”
training sets. This data set tests whether including pure

Table 2. All Atoms with LJ Parameter Types Exercised by the Training and Test Sets, Categorized by Whether They Are
Reoptimized in This Studya

aSMIRKS atom types are applied hierarchically, with more specific types superseding less-specific types, as described in Mobley et al.99 Each of
these atom types has σ and ε parameters that describe the LJ interactions; with 6 SMIRKS types included in the optimization, 12 LJ parameters
were optimized. In the “illustration” figures, any atomic index including a “*” is a wildcard, representing any atom or group of atoms.

Figure 2. 28 molecules were included in the “pure only” training set. The pure data used in our training sets contains one ρl and one ΔHvap
measurement per molecule, measured at close to ambient conditions (P = 1 atm, T = 298 K), yielding a training set of 28 molecules with 56 data points
total.
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ΔHvap alongsideΔHmix(x) improves the parameterization
of the cohesive energies between molecules, or whether
ΔHmix(x) alone is sufficient.

The measurements in the training set are for molecules
composed of carbon, hydrogen, and oxygen only (including
alcohols, esters, ethers, ketones, acids, and alkanes). These
compounds cover a wide range of fluid-phase polarizabilities,
with relative permittivities ranging from 1.9 (hexane46) to 35.7
(methanol47).
Data Set Selection. All training sets considered here are

composed of only alcohols, esters, ethers, ketones, acids, and
alkanes that have ample density and enthalpic data available and
contain only data points measured under near-ambient
conditions (288.15−323.15 K, 0.95−1.05 atm). This set of
moieties, containing only carbons, hydrogens, and oxygens, was
chosen to limit the scope of the study and focus specifically on
the choice of training data for a set of molecules. The molecules
included exercise a total of nine LJ types, of which six are
optimized, as shown in Table 2. A table showing which LJ types
are exercised by each molecule in the training set is available in
Supporting Information, Section S2.1. The three parameters
included that are not optimized are all hydrogen parameters; an
explanation of why they are not optimized is given in the
“Parameters Optimized” section.
We enforce the criteria that all measurements in the data set

contain only the molecules in Figure 2. This criterion controls
for the identity of molecules used in the optimization; whether
the measurements used in fitting are from a pure substance or
binary mixtures, they are restricted to the same set of molecules.
We note that some values for ρl(x) are obtained through the
conversion of Vexcess(x) and ρl, where ρl(x) is not directly
available.
Pure Substance Training Set. The “pure only” training set

is composed of one ρl and one ΔHvap measurement for each of
the selected molecules (Figure 2). These molecules were
manually chosen to include a selection of esters, ethers, ketones,
alcohols, and alkanes, which included long-/short-chain,
branched/unbranched, and cyclic/acyclic characteristics,
where data was available. The ρl measurements were sourced
from the NISTThermoML26 archive. TheΔHvap measurements

were sourced directly from the literature, as very limited data for
the moieties of interest is available in the ThermoML Archive.
Many data points were curated from the Majer et al. review,27

where care was taken to select data points which were deemed as
reliable by the authors, and for which at least three independent
measurements had been made in reasonable agreement. In total,
28 molecules were chosen for a total of 56 data points (28 ρl data
points48−72 and 28 ΔHvap data points25,73−83). For ΔHvap of
acids, measurements for infinitely dilute gas (as computed in ref
25) were sourced, which corresponds to the gas we simulate.
This is done because carboxylic acids tend to associate in the gas
phase.

Mixture Training Set. The binary mixtures selected for the
mixture training set (Figure 3) are composed of the molecules
included in the pure training set and were manually chosen to
include a diverse set of interactions. These property measure-
ments were sourced directly from the NIST ThermoML26

archive using the OpenFF Evaluator’s built-in data selection
tools. Where available, three ρl(x) and three ΔHmix(x) data
points were included for each binary mixture, one each at 25, 50,
and 75% composition, or as close to these values as possible
given data availability. These compositions were chosen so as to
ensure that the set included both components in excess to the
other as well as in close to equal amounts. Compositions
between 25 and 75% should capture most of the relevant
information, as deviations from ideality for many mixtures are
maximized near an equal mixture. Mixtures with compositions
close to pure (e.g., > 0.9) were excluded, as when the
concentration of one component becomes small, our simulation
boxes (1000 total molecules) would have a very low number of
molecules of that component. In total, measurements made for
33 binary mixtures were selected for a total of 195 data points.
This is significantlymore than the 56 total data points in the pure
data set, but it is drawn from a number of mixtures similar to the
number of compounds in the pure training set. We note that
after training was complete, we discovered that one ΔHmix(x)
data point in the mixture training set was transcribed into
ThermoML incorrectly (described in Supporting Information,
Section S4).

Figure 3. 33 pairs of molecules (shown as boxed pairs), which were chosen for the mixture training sets. The mixture data used in our training sets
contains one ρl(x) and one ΔHmix(x) measurement per mixture for three different compositions if multiple compositions were available (close to 25,
50, and 75%) measured at close to ambient conditions (P = 1 atm, T = 298 K), yielding a training set of 33 binary mixtures with 187 data points total.
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Test Set.The test set was chosen to includemeasurements of
ρl(x),ΔHmix(x), ρl, andΔHvap as in the training set. Additionally,
a set of non-aqueous solvation free energy (ΔGsolv) measure-
ments for the same moieties included in the training set was
sourced from theMNSolv database.84 Unlike the training set, we
do not require that all pure substance and binary mixture
measurements in the test set must be sourced from the same set
of molecules. Instead, given the limited amount of diverse
ΔHmix(x) and ΔHvap data for the selected moieties, focus was
given to selecting as diverse a test set as possible, which
maximally exercised the retrained parameters. Data points from
pure substances included in the training set were excluded from
the test set, as well as mixture data points frommixtures included
in the test set. The test set did include binary mixtures for which
one of the two components was present in the training set; for
example, a mixture of ethanol and pentanol would be
permissible in the test set even if data points for ethanol/
propanol and butanol/pentanol were both included in the
training set. This expands the test set to types of mixtures that
were not included in the training set; for example, mixtures
containing either an alcohol or ketone are in the training set, but
alcohol/ketonemixtures are only included in the test set. The set
was also selected to contain substances as distinct as possible
from the training set, and from other molecules in the test set.
Mixtures including carboxylic acids were not included in the test
set due to low data availability.
In order to select a maximally diverse test set from the pool of

molecules available in the ThermoML Archive or MNSolv
Database, a distance metric based on molecular fingerprints was
defined to determine how distinct any two substances are. Then,
binary mixtures were selected by a greedy optimization that
maximized this distance metric. For a more detailed description
of this process, see Section S1 in the Supporting Information.
The substances included for pure substance (ρl and ΔHvap)

measurements were then chosen to match the components of
the test set mixture properties where available; these were
supplemented with measurements for similar molecules that
exercise the same LJ parameters. This resulted in a test set
consisting of 236 ΔHmix(x) (from 43 unique molecules), 385
ρl(x) (from 60 unique molecules), and 85ΔGsolv measurements
(from 31 unique molecules), which was supplemented with a
hand-selected test set of 29 ΔHvap and 29 ρl pure component
measurements.
Physical Property Simulations. All estimates of the

physical property values were performed using the OpenFF
Evaluator44 package version 0.1.085 using the default estimation
workflow schemas, which are outlined in detail in the OpenFF
Evaluator documentation.86 Where possible, simulations are
reused to calculate physical properties. For example, simulations
of a pure liquid phase can be reused in calculations of ρl, ΔHvap,
and ΔHmix.
Pure Liquid Simulations. Pure liquid properties were

calculated by simulation in the NPT ensemble, at the
temperature and pressure from the corresponding physical
property reference. These were performed with the default
OpenFF Evaluator simulation workflow, in which a box of 1000
molecules of the target substance were placed in a simulation
box using PackMol,87 with parameters then assigned using the
OpenFF Toolkit version 0.6.0.88 An energy minimization and
0.2 ns equilibration run were then performed using OpenMM.
Subsequently, the molecules were simulated for 2 ns. For all
simulations, a Langevin integrator with BAOAB89 splitting and a
2 fs timestep, and the default OpenMM Monte Carlo barostat,

were employed to ensure simulation in the correct NPT
ensemble. Uncorrelated and well-equilibrated snapshots were
used to compute the ensemble averages of any observables,
according to the procedure outlined by Chodera.90 All
uncertainties in the average observables were computed by
bootstrapping with replacement and propagated through any
further calculations, assuming a Gaussian error model. Densities
are estimated using ensemble averages from these simulations.
Locations of scripts to run the simulations and reproduce the

results in this study are available in the Data and Code
Availability section.

Enthalpy of Vaporization Calculations. Enthalpies of
vaporization require a pure liquid simulation, as described in the
Pure Liquid Simulations section, as well as a gas-phase
simulation. This gas-phase simulation is performed for a single
molecule in the NVT ensemble, with periodic boundaries
disabled, using the same Langevin integrator as used with the
liquid simulations. These simulations are run for 30 ns instead of
the liquid phase 2 ns to converge statistics with only a single
molecule. Enthalpies are calculated using eq 1.

Mixture Properties.Mixture densities were simulated with
a similar workflow to the pure liquid simulations but with the
molecules in the initial box split proportionally between the two
chemical species according to the experimental mole fraction.
Densities of binary mixtures are straightforward to calculate as
they do not require more than one simulation; the process is the
same as for densities of single-component liquids. Binary
enthalpies of mixing are calculated according to eq 2, where the
enthalpies of the individual simulated components (H1, H2) are
multiplied by their mole fractions in the mixture and then
subtracted from the enthalpy of the simulated mixture Hmix(x1,
x2).
Enthalpies used in this calculation were simulated with a set of

three simulations: one for each pure component, and one for the
mixture. Each of these simulations followed the standard
workflow for a pure or mixture property.

Solvation Free Energies. Solvation free energies were
calculated using the default OpenFF evaluator workflows, along
with the YANK software package version 0.25.291,92 for
performing alchemical free energy calculations. The alchemical
cycle used in the calculation is the same as described in
Shivakumar et al.93 and involves (1) the removal of a solute
molecule from a box of solvent and (2) the annihilation of the
solute molecule in the gas phase. Calculation of step (1) involves
an alchemical pathway along which non-bonded interactions are
gradually turned off. Values of the λ variable that describes this
pathway are automatically determined by YANK. Liquid-phase
simulations are set up in a similar fashion to those used in our
other simulations, but with 2000 molecules rather than 1000 to
reduce statistical uncertainty; gas-phase simulations use the
same settings as in the calculation of enthalpies of vaporization.

Optimization. For stochastic gradient descent optimiza-
tions, we need to estimate gradients of the observables of interest
as a function of force field parameters. In this paper, gradients are
calculated using a reweighted finite difference scheme, where the
derivative dO/dx of an observableO with respect to a parameter
x is calculated using the central difference method with a relative
step (h=Δx/x) size of h = 10−4. Values ofO at x− h and x + h are
estimated by reweighting from the sampled ensemble using
pymbar,94 which is accurate for the properties of interest over
the small step size h. All optimizations were performed using the
ForceBalance software package using the built-in OpenFF
Evaluator target.43,44 Optimizations were run using the
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Levenberg95 non-linear least squares algorithm with an adaptive
trust radius96,97 to iteratively minimize the objective function
until it was observed to fluctuate around a minimum value in
each optimization. This algorithm has been used successfully
with ForceBalance for force field optimization previously.43,98 In
all cases, 12 iterations were sufficient to meet this criterion. Each
iteration consists of (1) estimation of each physical property
measurement in the training set using the current force field
parameters, (2) comparison of those estimated values to the
experimental values in ThermoML, (3) adjustment of the target
parameters with the ForceBalance optimizer. A weighted least
squares objective function, χ, was used to measure deviations of
the reference and estimated physical property values. An L2
penalty function based on the norm of the parameter
displacement vector (from the initial parameters) is used to
regularize the optimization, with a prior over the ForceBalance
mathematical parameters43 of 0.1 for ε and 1.0 for σ.
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where N is the number of types of properties (e.g., density,
enthalpy of vaporization, etc),Mn is the number of data points of
type n, ym

ref is the experimental value of data pointm, and ym(θ) is
the estimated value of data point m using the current force field
parameters. The denominator dn is an inverse weight with the
same units as property type n chosen so that each property type
contributed approximately equally to the objective function. For
example, for the pure training set, ∼50% of the objective
function value is due to ρl data, and∼50% is due toΔHvap. This a
priori approximation was made as it is unclear that any one type
of property should be weighted more than another.
Parameters Optimized. Both the training and test sets,

each containing only molecules composed of carbon, hydrogen,
and oxygen, exercise a total of 18 SMIRNOFF LJ parameters (9
different SMIRKS parameter types with one ε and σ per
SMIRKS). These LJ parameters in OpenFF 1.0.0 have not been
optimized since their inception in the first SMIRNOFF format
force field99 and are taken chiefly from AMBER parm94,100 with
the exception of the hydroxyl hydrogen parameter discussed
below. Of these parameters, 12 were optimized, with the
remaining 6 held constant at their initial OpenFF 1.0.0 values.
The parameters held constant (all for hydrogens) were not
optimized because either the parameter corresponds to a specific

context that was not sufficiently constrained by the training data
set or, in the case of [#1:1]-[#8] (hydroxyl hydrogen), the
OpenFF 1.0.0 ε value is explicitly set to a very small non-zero
value (ε = 5.27 × 10−5) and not reoptimized. This is a slight
modification of the AMBER hydroxyl hydrogen parameter100

(HO, ε = 0) to avoid unphysical effects caused by the AMBER
parameterization.99 Here, each parameter is uniquely identified
by a SMIRKS pattern, which encodes the chemical environment
to which the parameter will be applied.99 These parameters,
along with brief descriptions, are listed in Table 2.

Testing. Tests of force field performance were performed by
taking the final force fields produced from each optimization and
estimating each data point in the test set using the OpenFF
Evaluator. All property calculations were made using the same
property prediction workflows as in the optimizations.
To assess the improvement of the refitted force fields relative

to OpenFF 1.0.0, we calculate the mean shift in absolute error
for each of the physical property types in the benchmark set.
This metric describes the average improvement (or regression)
in a refitted force field’s ability to reproduce test set physical
properties compared to a reference force field and is described in
eq 4 for a generic observable O.

O
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O O O O
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In this equation, Osim,ffx is the simulation estimate of O with a
given force field and Oexp is the experimental value of O. The
reference force field ff0 is always chosen as OpenFF 1.0.0 in this
analysis. The average is taken over the test set of N physical
properties of one specific type [e.g., over the 236 ΔHmix(x)
measurements in our test set]. When bootstrapped 95%
confidence intervals are calculated with this metric, boot-
strapping is performed over paired measurements in two force
fields, capturing the correlation between force fields that is lost
when bootstrapped errors are calculated individually.
We also calculate kernel density estimates (KDE)101,102 of the

distribution of individual shifts (|Osim,ff1 − Oexp| − |Osim,ff0 −
Oexp|)n to visualize the differences in improvement for the
different force fields. KDE plots are generated using the
seaborn103 0.11.2 data visualization package, with a Gaussian
kernel and bandwith calculated with the method of Scott.104

Figure 4. Four different training sets generally drive the parameters in the same direction and to similar magnitudes, indicating all data sets encode
somewhat similar parameter information. Changes in parameter values for each of the training sets considered in this paper are shown as bar graphs
above. The percent change in the each parameter for each of the training sets relative to their starting value taken from the OpenFF 1.0.0 force field.
One notable difference between the “pure only” set and the sets containing mixtures is the [#8X2H1+0:1] (hydroxyl oxygen) σ parameter, which is
reduced by only 0.4% in the “pure only” (orange) set, but reduced by 1.7−2.8% in the other sets.
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■ RESULTS AND DISCUSSION

Optimization. Parameter Changes. The objective function
was observed to decrease by 50−70% for each of the four
optimizations performed, indicating improvements against the
training set in all cases (see Supporting Information, Section
S2.1). This improvement was achieved with relatively small
changes in the target parameters, as most of the refitted
parameters changed only slightly from their initial values,
varying less than 5% in most cases (Figure 4). A notable
exception is ε for [#1:1]-[#6X4] (hydrogen attached to
tetravalent carbon), which changes up to 40% depending on
the optimization. We also note that σ for [#8X2H1+0:1]

(hydroxyl oxygen) changes much more when trained against
mixture data (−0.4% for “pure only” vs −1.7−2.8% for sets
containing mixture data).

Training Set Property RMSE.We examine the performance of
the trained force fields on the training set, as well as the changes
in parameters after optimizations. This detailed look at the
optimization sheds light on which parameter changes are driving
the specific property improvements that result in an improved
force field. Using the RMSE for each target property as a metric
and grouping by property and chemical environment, it is clear
that most of the different moieties in the training set are
improving when trained against either pure or mixture data. This

Figure 5. Optimization generally improves training set RMSEs of pure properties for all force fields trained against pure properties. Figure shows
categorized RMSE versus experiment of ρl (left panel) andHvap (right panel) measurements in the “pure only” training set, estimated using the initial
parameters (OpenFF 1.0.0, blue points) and the final parameters after 12 optimization iterations (“pure only”, orange points). RMSEs are categorized
by chemical environment, and error bars represent 95% confidence intervals computed by bootstrapping with replacement for 1000 iterations. The
results from the other training sets containing pure properties (“mixtures and pure density”, “pure and mixture”) are statistically equivalent, with the
exception of ketone pure densities (statistically better in the “pure only” set) and alcohol heats of vaporization (statistically inferior in the “pure only”
dataset). Figures for other optimization are available in Supporting Information, Sections S2.6.2 and S2.7.2.

Figure 6. Optimization improves RMSEs of mixture properties for all training sets. Figure shows categorized RMSE versus experiment of ρl(x) (left
panel) andΔHmix(x) (right panel) measurements in the “mixture only” training set, estimated using the initial parameters (OpenFF 1.0.0, blue points)
and the final parameters after 12 iterations (“mixture only”, orange points). RMSEs are categorized by chemical environment, where “ether > ketone”
denotes a mixture with ether molecules in excess of ketone molecules and “ether ≈ ketone” denotes a mixture with ether and ketone molecules in
roughly equal compositions, and so forth. Error bars represent 95% confidence intervals computed by bootstrapping with replacement for 1000
iterations. The results from the other training sets containing mixture properties (“mixtures and pure density” and “pure and mixture”) show
statistically equivalent improvements in training set RMSEs and are available in Supporting Information, Sections S2.6.2 and S2.7.2.
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is evident when training against both the “pure only” data set in
Figure 5 and the “mixture only” data set in Figure 6.
Improvements in both pure and mixture training data for the
other two (mixed) optimizations were also observed, which are
shown in the Supporting Information (Sections S2.6.2 and
S2.7.2).
One notable exception is ketones, as pure ketone densities

and “ketone > ether” binary densities were both degraded upon
training. Given that this occurs for both pure and mixture
training data, it is unlikely that it is a symptom of the training sets
selected. We also note that ketone ΔHvap RMSEs are improved,
alongside both densities and ΔHvap RMSEs for esters, which
utilize the same [#8:1] generic carbon parameter. It is likely that
these properties are improved at the expense of ketone densities.
By examining the first derivatives of the density contribution to
the objective function with respect to the force field parameters,
again partitioned by moiety (Figure 7), we see that modifying
[#1:1]-[#6X4] (hydrogen attached to tetravalent carbon),
[#6X4] (tetravalent carbon), and [#8:1] (generic oxygen) has
an opposite effect on ketone objectives compared to the
objective for other moieties. This suggests that the force field
lacks the degrees of freedom required to accurately capture
carbons and hydrogens in ketone environments alongside the
other environments represented by the same SMIRKS patterns.
It is possible that including a more specific hydrogen or carbon
parameter for this environment might improve prediction of

ketone densities. Another possibility is that the LJ parameters
are compensating for deficiencies in the AM1−BCC electro-
static model, which was not optimized in this study. This result
will be explored in further work as it is beyond the scope of the
current study. However, analyses such as these point out how
additional interaction types can be motivated by the large sets of
data generated by this sort of study.

Test Set Performance. Overall Results. Benchmarking
simulations of the test set physical property measurements were
performed for OpenFF 1.0.0 and each of the refitted force fields.
Mean shift and shift distributions (metrics described in the

Methods section) for the test sets of each of the four physical
properties used in training are shown in Figure 8.
We observe that for both ρl and ρl(x), the refitted force fields

all offer mild improvements over OpenFF 1.0.0, with no
significant differences between them. This is consistent with our
expectations as densities are generally well predicted in the initial
force field. On the other hand, for ΔHmix(x), all refitted force
fields improve relative to OpenFF 1.0.0, but the improvements
of the three force fields trained with mixture data (“mixture
only”, “mixtures + pure density”, and “pure and mixture”) are
significantly larger (0.2 vs 0.1 kJ/mol for “pure only”), indicating
that training against mixture data significantly improves
performance on our ΔHmix(x) test set. This is also clearly
visible in the KDE plot, where the distributions for the sets
containing mixtures are shifted relative to the “pure only” set. A

Figure 7. Parameter gradients indicate that ketone measurements target drive parameters for hydrogen, carbon, and oxygen in opposite directions as
other moieties. The data show the contribution of the first derivatives of the force field parameters to the pure density data portion of the objective
function for the “pure only” training set. Dotted lines correspond to the samemoieties as solid lines of the same color and indicate that themagnitude of
the gradient is small, and is shown enlarged to a magnitude of 1 in this figure. The data indicate that the ketone measurements in the training set
(orange dotted line) are pulling the hydrogen parameter [#1:1]-[#6X4], general tetravalent carbon parameter [#6X4], and generic oxygen parameter
[#8:1] in opposite directions from the other chemical environments (all other lines). This suggests that adding a separate parameter (or parameters) to
explicitly address ketone environments is likely to improve parameterization.
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significant number of measurements are improved by > 0.75 kJ/
mol when trained against mixtures, whereas almost no
measurements achieve this improvement when trained against
the “pure only” set. Similarly, for our ΔHvap test set, we observe
that the two force fields trained against sets that include ΔHvap

data (“pure only” and “pure and mixture”) offer significant

improvements over OpenFF 1.0.0, whereas the two sets that do
not includeΔHvap (“mixture only”, “mixtures and pure density”)
do not improve relative to the initial force field. Again, this can
be seen clearly in the KDE plot, where the peaks of the
distributions for force fields trained with ΔHvap data are shifted
left compared to the other force fields.

Figure 8. Benchmarking metrics for the test data sets of ρl, ρl(x),ΔHmix(x), andΔHvap. Benchmarking indicates that densities are well predicted in all
cases, test set ΔHvap is improved when training against ΔHvap, and test set ΔHmix(x) is improved when training against ΔHmix(x). Upper panels show
the mean shift in absolute error fromOpenFF 1.0.0 (the starting point for each of these optimizations). Negative values indicate that the refitted force
field’s performance on the test set is improved related to OpenFF 1.0.0. Lower panels show KDEs of the distribution of absolute error shifts from
OpenFF 1.0.0. Negative values indicate improvement relative toOpenFF 1.0.0, whereas positive values indicate degradation. Error bars in upper panels
represent 95% confidence intervals, bootstrapped over pairs of measurements between OpenFF 1.0.0 and the refitted force fields.

Figure 9. Benchmarking metrics for the ΔGsolv test data set shows that training against the “mixture only” set improves ΔGsolv predictions, whereas
training against the “pure only” set degrades predictions. The left panel shows themean shift in absolute error fromOpenFF 1.0.0 (the starting point for
each of these optimizations). Negative values indicate that the refitted force field’s performance on the test set is improved related to OpenFF 1.0.0.
The right panel shows KDE of the distribution of absolute error shifts from OpenFF 1.0.0. Negative values indicate improvement relative to OpenFF
1.0.0, whereas positive values indicate degradation. Error bars in upper panels represent 95% confidence intervals, bootstrapped over pairs of
measurements between OpenFF 1.0.0 and the refitted force fields.
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This data shows, perhaps unsurprisingly, that force fields
trained against ΔHvap and ΔHmix(x) will do better at
reproducing those respective properties. In this view, one
could assume that training against the “pure and mixture” set,
which contains both types of enthalpy data, is the best strategy.
However, the utility of improved ΔHvap predictions is
questionable for a force field intended to be used for
biomolecular systems, where vaporization does not typically
occur.
With this in mind, benchmarking on the non-aqueous ΔGsolv

test set serves as a more neutral test of the different force fields’
abilities to capture the appropriate interaction strengths
between molecules. A plot of the mean shifts for the ΔGsolv
test set, as well as a KDE plot of the shift distribution, is shown in
Figure 9.
The mean shift of ΔGsolv absolute errors relative to OpenFF

1.0.0 shows that training against the “mixture only” set provides
an improvement over the initial force field, whereas training
against the “pure only” set degrades ΔGsolv predictions. This is
also reflected in the KDE plot, where the peak of the shift
distribution is shifted right for the two sets that contain ΔHvap
(“pure only”, “pure and mixture”) compared to the two that do
not (“mixture only” and “mixtures + pure density”), suggesting
that refitting to ΔHvap hinder attempts to reproduce properties
like ΔGsolv. It is important to note that the initial LJ parameters
used in this force field were fitted to ΔHvap simulation when
originally determined,105 and that the RMSE of OpenFF 1.0.0
on the ΔGsolv test set is 3.3 kJ/mol, so reasonably accurate
predictions can be obtained with LJ parameters trained against
ΔHvap. However, training against mixture data can offer
additional improvements to performance.
These results indicate that mixture properties can replace

physical properties of pure systems as a target for training LJ
parameters, particularly in cases where more and more
chemically diverse data is available for mixtures. Training
against the “pure only” set does lead a significant improvement
to ΔHmix(x) against the baseline; however, training directly
against the “mixture only” set yields a much larger improvement.
It appears that training against properties of mixtures alone
sufficiently constrains the optimization and includes enthalpic

information that the traditional pure dataset alone does not. We
also note that augmenting a traditional pure data training set
with mixture data (such as the “pure and mixture” set) can
improve treatment of mixture properties without degrading
performance on pure properties.

Results by Chemical Environment.Notably, training against
the mixture properties appears to have corrected a systematic
error in the enthalpy of mixing, whose training against pure
properties alone is not able to correct. This can be inferred from
the KDE plot for ΔHmix(x) in Figure 8, where the shift of the
secondary peak indicates that performance is improving for a
subset of molecules. More specific evidence is obtained from a
simulation/experiment parity plot for ΔHmix(x), where a
systematic underprediction of alcohol/ester (green points)
and alcohol/ketone (orange points) mixture enthalpies is
corrected (Figure 10). The improvement in the treatment of
alcohol/ketone mixtures was achieved without directly includ-
ing these mixtures in the training set.
This is particularly significant as alcohol/ester and alcohol/

ketone mixture enthalpies have strong deviations from ideal
solution behavior. Namely, ketone and esters are both hydrogen
bond acceptors only and thus do not form hydrogen bonds in
the pure phase. However, when mixed with a hydrogen bond
donor (an alcohol), they do. This change is likely related to the
reduction in σ for the [#8X2H1+0:1] (hydroxyl oxygen), noted
in Figure 4. This reduction is much larger (1.7−2.8 vs 0.4% for
“pure only”) for force fields refit against mixture data. This is
where mixture properties, and especially their ability to more
readily capture complementary interactions, appear to be
advantageous over pure properties.

■ CONCLUSIONS
Using our automatic data set selection and force field
optimization workflow, we reparameterized select LJ parameters
of the OpenFF 1.0.0 force field against training sets containing
combinations of pure [ρl,ΔHvap] and mixture [ρl(x),ΔHmix(x)]
properties for alkanes, alcohols, esters, ethers, ketones, and acids.
These training sets were controlled such that the samemolecules
are used in both pure and mixture training sets, to isolate the
effect of the different data types used. Through iterative

Figure 10. Training against measurements of liquid mixtures corrects systematic error in alcohol/ester and alcohol/ketone enthalpies of mixing. This
figure shows a comparison of the estimated and experimentally measured ΔHmix(x) data points for the test set, plotting for force fields optimized
against the “mixture only” and “pure only” training sets, as well as the baseline OpenFF 1.0.0 (Parsley) force field. The systematic error in alcohol/ester
and alcohol/ketone mixtures (highlighted green and orange points) is significantly reduced when training against the properties of mixture, but not
when training against properties of pure systems.
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optimization of parameter sets, new force fields were produced
that all exceeded the performance of the initial force field on
some parts of the test set. Furthermore, we observe that training
LJ parameters against mixture data constrains the optimization
in a comparable or superior manner to optimizing with the
traditional pure properties commonly used in LJ parameter-
ization.
Training against mixture properties, specificallyΔHmix(x), is a

compelling alternative for capturing enthalpic contributions to
LJ interactions to ΔHvap. Training against ΔHvap is problematic
due to limited data coverage and quality, as well as changes in
molecular polarization between liquid- and gas-phase simu-
lations. Mixture property datasets also offer expanded datasets
by varying composition and are more widely available in the
ThermoML Archive. Moreover, we have shown here how
mixture properties offer significant advantages over pure
properties as an optimization target, especially for interactions
which deviate strongly from ideality. These advantages lead to
improved LJ parameter sets and a better agreement with
experiment. Given that we control for the identity of the
molecules in the training set, this demonstrates that mixture
properties contain information about intermolecular interac-
tions that pure component property measurements do not.
While some parameter sets we demonstrate in this work

improved both enthalpies of vaporization and enthalpies of
mixing, in our view, improvements in the properties of mixtures
are a better metric of force field improvement than pure or phase
change properties for force fields intended for use in
biomolecular simulations because simulations typically take
place in mixed aqueous or other liquid phases. This is supported
by our finding that force fields trained against mixture data
improve predictions of ΔGsolv, whereas force fields trained
against only pure data (including ΔHvap) degrade those
predictions. The same interactions captured in solvation free
energies should also be informative for properties of
pharmaceutical/biomolecular interest, such as binding affinities.
For this reason, optimization of LJ parameters against mixture
property targets is planned to be the standard going forward for
our OpenFF force fields. It is also important to note that the
scope of the study is limited to LJ parameters, and that other
parameters, such as electrostatics, torsions, and 1−4 atomic
scalings, will impact the accuracy of thesemixture properties.We
anticipate that the automated property prediction in our
parameterization workflow, along with the wider chemistry
covered by the mixture properties in the ThermoML Archive,
will lead to more accurate LJ parameters for general small-
molecule force fields.
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