
1528 Biophysical Journal Volume 109 October 2015 1528–1532
Computational Tools
MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics
Trajectories
Robert T. McGibbon,1,* Kyle A. Beauchamp,2 Matthew P. Harrigan,1 Christoph Klein,3 Jason M. Swails,4

Carlos X. Hernández,5 Christian R. Schwantes,1 Lee-Ping Wang,6 Thomas J. Lane,7 and Vijay S. Pande1,5
1Department of Chemistry, Stanford University, Stanford, California; 2Computational Biology Program, Sloan-Kettering Institute, New York,
New York; 3Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee; 4Department of Chemistry,
Rutgers University, Piscataway, New Jersey; 5Biophysics Program, Stanford University, Stanford, California; 6Department of Chemistry,
University of California, Davis, Davis, California; and 7SLAC National Accelerator Laboratory, Menlo Park, California
ABSTRACT As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying com-
plex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is
growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj
reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis
capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of
common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem,
bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization
tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects
these datasets with the modern interactive data science software ecosystem in Python.
INTRODUCTION
Molecular dynamics (MD) simulations yield a great deal of
information about the structure, dynamics, and function
of biological macromolecules by modeling the physical in-
teractions between their atomic constituents. Modern MD
simulations, often using distributed computing, graphics
processing unit acceleration, or specialized hardware can
generate large datasets containing hundreds of gigabytes
or more of trajectory data tracking the positions of a sys-
tem’s atoms over time (1). To use these vast and informa-
tion-rich datasets to understand biomolecular systems and
generate scientific insight, further computation, analysis,
and visualization are required (2).

Within the last decade, the Python language (https://
www.python.org/) has become a major hub for scientific
computing. It features a wealth of high-quality open source
packages, including those for interactive computing (3),
machine learning (4), and visualization (5). This environ-
ment is ideal for both rapid development and high
performance, as computational kernels can be imple-
mented in the languages C, Cþþ, and FORTRAN, but
made available within a more user-friendly interactive
environment.

In the MD community, the benefits of integration with
such industry standard tools have not yet been fully realized
because of a tradition of custom file formats and command-
Submitted June 23, 2015, and accepted for publication August 10, 2015.

*Correspondence: rmcgibbo@stanford.edu

Editor: David Sept.

� 2015 by the Biophysical Society

0006-3495/15/10/1528/5
line analysis. To address this need, we have developed
MDTraj, a modern, open, and lightweight Python library
for analysis and manipulation of MD trajectories. The proj-
ect has the following goals:

1) To serve as a bridge between MD data and the modern
statistical analysis and scientific visualization software
ecosystem in Python.

2) To support a wide range of MD data formats and compu-
tations.

3) To run rapidly on modern hardware with efficient mem-
ory utilization, enabling the interactive analysis of large
datasets.

Several other software packages for the analysis of MD
trajectories exist, including the GROMACS tools (6),
CPPTRAJ (7), VMD (8), MMTK (9), MDAnalysis (10),
Bio3D (11), ST-Analyzer (12), LOOS (13), and Pteros
(14). GROMACS and CPPTRAJ provide a broad range of
functionality to users from the Unix command line, or
with a simple interactive scripting environment. LOOS
and Pteros are Cþþ toolkits that enable the construction
of novel trajectory analysis programs, while VMD and
ST-Analyzer provide convenient graphical interfaces. Like
MDTraj, MMTK and MDAnalysis are written in Python
while Bio3D is written in the statistical programming lan-
guage R (https://www.r-project.org/). Each of these soft-
ware packages has capabilities that have served to inform
the development of MDTraj.
http://dx.doi.org/10.1016/j.bpj.2015.08.015

https://www.python.org/
https://www.python.org/
https://www.r-project.org/
mailto:rmcgibbo@stanford.edu
http://dx.doi.org/10.1016/j.bpj.2015.08.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2015.08.015&domain=pdf
http://dx.doi.org/10.1016/j.bpj.2015.08.015


MDTraj: Analysis of MD Trajectories 1529
MATERIALS AND METHODS

Capabilities and implementation

MDTraj is widely interoperable and extremely easy to use. First and

foremost, MDTraj can load trajectory and/or topology data from the for-

mats used by a broad range of MD packages, including AMBER (15),

GROMACS (6), DESMOND (16), CHARMM (17), NAMD (18), TINKER

(19), LAMMPS (20), OpenMM (21), ACEMD (22), and HOOMD-Blue

(23); see Table 1 for a full list of supported file formats. This wide support

enables consistent interfaces and reproducible analyses regardless of users’

preferred MD simulation packages.

From its inception, MDTraj has been designed to work in concert with

other packages for analysis and visualization. No single toolkit can provide

all possible ways to analyze molecular simulations, especially given the

rapid pace of development in statistics and data science. Rather than

attempting to provide all conceivable functionality in one toolkit, MDTraj

leverages Python and NumPy (http://www.numpy.org/) to empower users to

connect their MD data with the large and rapidly growing ecosystem of data

science tools available more broadly in the community.

MDTraj originated from the trajectory handling portions of MSMBuilder

(24), where it now provides a stable base for handling trajectories,

computing order parameters and projections, and providing the distance

metrics—such as minimal root-mean-squared deviation (RMSD)—that

are necessary for clustering. Additionally, it is now used inside tools that

analyze data from the Folding@home distributed computing architecture

(25), a structure-based virtual screening pipeline at Google Research, the

PyEMMA Markov modeling package (26), the Ensembler and mBuild

(27,28) modeling tools, and countless individual analysis scripts. MDTraj

is part of the Omnia consortium (http://omnia.md) suite of tools, which

will be described in a later article.

Most data analyses for MD involve either extracting a vector of order

parameters of each simulation snapshot or defining a distancemetric between

snapshots.MDTrajmakes it very easy to rapidly extract these representations.

It includes an extremely fast RMSD engine capable of operating near the

machine floating point limit described in detail by Haque et al. (29), perform-

ing Theobald’s QCP algorithm (30) approximately three times faster than

the original implementation. Functions for secondary-structure assignment

(31), solvent-accessible surface area determination (32), hydrogen bond

identification (33), residue-residue contact mapping, NMR scalar coupling

constants (34), nematic order parameters (35), and the extraction of various

internal degrees of freedom are similarly available. Where appropriate,

these compute kernels are written in C or Cþþ and heavily optimized with

vectorized instructions and multithreading. To enable interoperability, these

data are returned to the user as multidimensional NumPy arrays, the standard

numeric data storage format for the scientific Python ecosystem.

MDTraj also provides an atom selection language. Often, analysis

functions are applied to a subset of atoms in the system. To generate arrays

of these indices, the topology attribute and full Python grammar can be a

powerful combination (i.e., Fig. 1, line 2). For users less familiar with
TABLE 1 List of supported file formats

Package File Formats

Many packages pdb, xyz, dcd

Amber prmtop, crd, netcdf, binpos, restrt

Gromacs gro, xtc, trr

Desmond dtr, stk

CHARMM psf

LAMMPS lammpstrj

TINKER arc

HOOMD-Blue xml

OpenMM xml

TRIPOS mol2

MDTraj hdf5
Python or making the transition from other packages, a natural text-based

selection syntax can be used as well (i.e., Fig. 1, line 3). These selection

strings can be translated into standard Python syntax for pedagogical pur-

poses or directly executed.

Ease-of-use is a central and deliberate goal at each level of the design

and implementation of MDTraj. This starts with installation. Using the

cross-platform Conda package manager, users can get started in seconds us-

ing the shell command conda install �c omnia mdtraj, which

downloads and installs precompiled binaries of MDTraj (and all of its de-

pendencies) on Windows, Linux, or Mac OS-X, without the requirement

of administrator privileges.

The package has an extremely simple object model, which makes it very

easy for new users to get started. Only a single class, Trajectory, needs

to be mastered; it contains all relevant information about the MD trajectory,

such as the atomic coordinates, unit cell dimensions, and simulation time.

Loading files and performing analysis are generally done with functions

(e.g., mdtraj.load, mdtraj.compute_<name>) as opposed to

classes to provide a simple and intuitive user experience that minimizes

the need to remember complex object workflows.

MDTraj is extensively documented in a consistent format. The package

itself contains over 9000 lines of Python docstrings that describe each func-

tion and class. The website, http://mdtraj.org, contains complete documen-

tation, but more importantly contains 14 complete, executable example

notebooks demonstrating topics including hydrogen-bond identification,

Ramachandran plotting, and strategies for memory-limited computation

on large datasets. These examples provide new users the patterns to get

up and running with their own analyses immediately.

Furthermore, MDTraj includes a unique interactive WebGL-based three-

dimensional structure viewer for the IPython notebook adapted from iview

(36), shown in Fig. 2. Because it combines the analysis input code with re-

sults and plots into a single worksheet, the IPython notebook provides one

of the most convenient user interfaces for interactive analysis. This conve-

nience is further enhanced by MDTraj’s TrajectoryView widget,

which runs inside the IPython notebook and provides a high-quality and

fully interactive three-dimensional rendering of a trajectory. The viewer

can save high-quality png images or STL three-dimensional models.

MDTraj thus not only provides first-class scriptability but also high-quality

three-dimensional visualization.

The development, engineering, and testing of MDTraj incorporates

modern best practices for scientific computing (37). The package contains

more than 1100 unit tests for individual components. These tests are contin-

ually run on each incremental contribution on both Windows and Linux,

using multiple versions of Python and the required libraries. The project

is hosted on GitHub, and development takes place fully openly and collab-

oratively. Users of MDTraj are often researchers who are interested in

analyzing simulations in new ways, a task that involves not only MDTraj

library functions but also writing new code. The simple coding style,

open source licensing, GitHub pull-request-based development pattern

(38), and active culture of collaborative code review enable these

researchers to rapidly prototype new methods and extend MDTraj. This

has been borne out by the MDTraj community, which comprises members

from numerous academic and industrial research groups across the world

that have contributed to the project over the past two years.
RESULTS AND DISCUSSION

The capabilities of MDTraj serve as a bridge, connecting
MD data with statistics and graphics libraries developed
for general data science audiences. A key advantage of
this design, for users and developers, is access to a much
wider range of state-of-the-art analysis capabilities charac-
terized by large feature sets, extensive documentation, and
active user communities.
Biophysical Journal 109(8) 1528–1532

http://www.numpy.org/
http://omnia.md
http://mdtraj.org


FIGURE 1 The MDTraj atom selection lan-

guage. Queries can be expressed using standard

Python code (line 2), or an intuitive string-based

syntax (line 3).

1530 McGibbon et al.
A demonstration of this integrative workflow is shown
in Fig. 3, which combines MDTraj with the scikit-
learn (4) for principal component analysis (PCA) and
matplotlib (5) for visualization, to determine high-
variance collective motions in a protein system. While
PCA is a widely used method that is included in a variety
of MD analysis packages, the advantage of integrating
with the wider data science community is immediately
evident when moving on to more complex statistical anal-
ysis. For example, a variety of sparse and kernelized
PCA-like methods have been introduced into the machine
learning community (39), and may be quite powerful for
analyzing more complex protein systems. Because of
its open and interoperable design, these cutting-edge statis-
tical tools are readily available to MD researchers with
MDTraj, without duplication of developer efforts and inde-
pendent of the particular MD software used to perform the
simulations.

We generally find that file I/O and main memory are more
limiting than raw CPU performance for MD analysis.
For this reason, simple multinode parallelization, even
over relatively slow interconnects, can often be extremely
useful for accelerating calculations. As an example, Fig. 4
shows a demonstration of the use of MDTraj with the
IPython parallel toolkit to parallelize the calculation of the
solvent-accessible surface area of a trajectory over the indi-
FIGURE 2 MDTraj’s interactive WebGL-based protein and trajectory

viewer. This feature requires a modern WebGL-enabled browser, and the

IPython notebook that can be installed with Conda using the command

conda install IPython-notebook. To see this figure in color,

go online.

Biophysical Journal 109(8) 1528–1532
vidual snapshots of the trajectory. The code requires sepa-
rately initializing an array of IPython engine processes on
which the calculation is executed. These can be distributed
over many nodes on a cluster or in the cloud and linked
together by MPI or SSH. Because many simulation datasets
contain many separate MD trajectories saved in separate
files, a similar pattern can also be used to process individual
files in parallel.
CONCLUSIONS

Within the field of trajectory analysis tools, MDTraj stands
out due to its ease of use, flexibility, and Python-centric
design, largely thanks to its organization around the intuitive
Trajectory object in which data are stored as NumPy
arrays. This design significantly enhances extensibility and
gives users a great deal of latitude for freely accessing and
manipulating the data according to the needs of their
research. MDTraj speeds up analysis tasks by implementing
computationally intensive operations (such as RMSD) using
optimized low-level kernels written in C/Cþþ. Further-
more, MDTraj can read and write a very wide range of tra-
jectory file formats, ensuring interoperability across most
MD software packages.
FIGURE 3 Demonstration of PCAwith MDTraj, scikit-learn, and

MATPLOTLIB. To see this figure in color, go online.



FIGURE 4 Demonstration of solvent-accessible surface area calculation

done in parallel with MDTraj and IPython. To see this figure in color,

go online.

MDTraj: Analysis of MD Trajectories 1531
Software Availability

MDTraj is available under the GNU Lesser General Public
License (LGPL), version 2.1 or later. Full documentation
and examples are available at the project home page,
http://mdtraj.org, and development is hosted on GitHub at
http://github.com/mdtraj/mdtraj. The latest release, version
1.4.2, is archived at doi:10.5281/zenodo.18700.
AUTHOR CONTRIBUTIONS

R.T.M., K.A.B., M.P.H., C.K., J.M.S., C.X.H., C.R.S., L.-P.W., and T.J.L.

developed the software; R.T.M. drafted the article; R.T.M., C.X.H.,

M.P.H., L.-P.W., J.M.S., K.A.B., C.R.S., and T.J.L. edited the article; and

all authors read and approved the final article.
ACKNOWLEDGMENTS

We are grateful to the full team of MDTraj contributors: Patrick Riley, Teng

Lin, Tim Moore, Ravi Ramanathan, Joshua Adelman, Chaya Stern, Gert

Kiss, Muneeb Sultan, Yutong Zhao, Andrea Zonca, Ondrej Marsalek,

Thomas Peulen, Anton Goloborodko, and Alexander Götz, as well as par-

ticipants on the MDTraj discussion forum and issue tracker.

The authors acknowledge funding from the National Institutes of Health

(grants No. R01-GM62868 and No. P30-CA008748) and National Science

Foundation (grant No. MCB-0954714).
REFERENCES

1. Klepeis, J. L., K. Lindorff-Larsen, ., D. E. Shaw. 2009. Long-time-
scale molecular dynamics simulations of protein structure and function.
Curr. Opin. Struct. Biol. 19:120–127.

2. Lane, T. J., D. Shukla, ., V. S. Pande. 2013. To milliseconds and
beyond: challenges in the simulation of protein folding. Curr. Opin.
Struct. Biol. 23:58–65.
3. Pérez, F., and B. E. Granger. 2007. IPython: a system for interactive sci-
entific computing. Comput. Sci. Eng. 9:21–29.

4. Pedregosa, F., G. Varoquaux, ., E. Duchesnay. 2011. Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12:2825–2830.

5. Hunter, J. D. 2007. Matplotlib: a 2D graphics environment. Comput.
Sci. Eng. 9:90–95.

6. Hess, B., C. Kutzner, ., E. Lindahl. 2008. GROMACS 4: algorithms
for highly efficient, load-balanced, and scalable molecular simulation.
J. Chem. Theory Comput. 4:435–447.

7. Roe, D. R., and T. E. Cheatham. 2013. PTRAJ and CPPTRAJ: software
for processing and analysis of molecular dynamics trajectory data.
J. Chem. Theory Comput. 9:3084–3095.

8. Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molec-
ular dynamics. J. Mol. Graph. 14:33–38, 27–28.

9. Hinsen, K. 2000. The molecular modeling toolkit: a new approach to
molecular simulations. J. Comput. Chem. 21:79–85.

10. Michaud-Agrawal, N., E. J. Denning, ., O. Beckstein. 2011.
MDAnalysis: a toolkit for the analysis of molecular dynamics simula-
tions. J. Comput. Chem. 32:2319–2327.

11. Grant, B. J., A. P. C. Rodrigues, ., L. S. D. Caves. 2006. Bio3D:
an R package for the comparative analysis of protein structures.
Bioinformatics. 22:2695–2696.

12. Jeong, J. C., S. Jo, ., W. Im. 2014. ST-Analyzer: a web-based
user interface for simulation trajectory analysis. J. Comput. Chem.
35:957–963.

13. Romo, T., and A. Grossfield. 2009. LOOS: an extensible platform for
the structural analysis of simulations. In Engineering in Medicine
and Biology Society, EMBC 2009. Annual International Conference
of the IEEE. Institute of Electrical and Electronics Engineers, Piscat-
away, NJ, pp. 2332–2335.

14. Yesylevskyy, S. O. 2012. Pteros: fast and easy to use open-source Cþþ
library for molecular analysis. J. Comput. Chem. 33:1632–1636.

15. Case, D., T. Darden, ., P. Kollman. 2015. AMBER. University of
California, San Francisco, CA.

16. Bowers, K., E. Chow, ., D. Shaw. 2006. Scalable algorithms for mo-
lecular dynamics simulations on commodity clusters. In ACM/IEEE
SC 2006 Conference. Institute of Electrical and Electronics Engineers,
New York, 43–43.

17. Brooks, B. R., R. E. Bruccoleri, ., M. Karplus. 1983. CHARMM:
a program for macromolecular energy, minimization, and dynamics
calculations. J. Comput. Chem. 4:187–217.

18. Phillips, J. C., R. Braun, ., K. Schulten. 2005. Scalable molecular
dynamics with NAMD. J. Comput. Chem. 26:1781–1802.

19. Ponder, J. W., and F. M. Richards. 1987. An efficient Newton-like
method for molecular mechanics energy minimization of large mole-
cules. J. Comput. Chem. 8:1016–1024.

20. Plimpton, S. 1995. Fast parallel algorithms for short-range molecular
dynamics. J. Comput. Phys. 117:1–19.

21. Eastman, P., M. S. Friedrichs, ., V. S. Pande. 2013. OpenMM 4: a
reusable, extensible, hardware independent library for high perfor-
mance molecular simulation. J. Chem. Theory Comput. 9:461–469.

22. Harvey, M. J., G. Giupponi, and G. D. Fabritiis. 2009. ACEMD: accel-
erating biomolecular dynamics in the microsecond time scale. J. Chem.
Theory Comput. 5:1632–1639.

23. Anderson, J. A., C. D. Lorenz, and A. Travesset. 2008. General purpose
molecular dynamics simulations fully implemented on graphics pro-
cessing units. J. Comput. Phys. 227:5342–5359.

24. Beauchamp, K. A., G. R. Bowman, ., V. S. Pande. 2011.
MSMBuilder2: modeling conformational dynamics at the picosecond
to millisecond scale. J. Chem. Theory Comput. 7:3412–3419.

25. Larson, S. M., C. D. Snow, ., V. S. Pande. 2004. Folding@home and
Genome@home: using distributed computing to tackle previously
intractable problems in computational biology. In Computational
Genomics: Theory and Applications. R. Grant, editor. Horizon Scien-
tific Press, Norfolk, VA.
Biophysical Journal 109(8) 1528–1532

http://mdtraj.org
http://github.com/mdtraj/mdtraj
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref1
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref1
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref1
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref2
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref2
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref2
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref3
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref3
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref4
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref4
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref5
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref5
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref6
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref6
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref6
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref7
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref7
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref7
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref8
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref8
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref9
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref9
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref10
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref10
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref10
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref11
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref11
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref11
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref12
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref12
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref12
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref13
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref13
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref13
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref13
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref13
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref14
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref14
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref15
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref15
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref16
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref16
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref16
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref16
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref17
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref17
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref17
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref18
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref18
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref19
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref19
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref19
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref20
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref20
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref21
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref21
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref21
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref22
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref22
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref22
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref23
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref23
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref23
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref24
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref24
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref24
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref25
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref25
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref25
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref25
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref25


1532 McGibbon et al.
26. Senne, M., B. Trendelkamp-Schroer, ., F. Noé. 2012. EMMA:
a software package for Markov model building and analysis.
J. Chem. Theory Comput. 8:2223–2238.

27. Parton, D. L., P. B. Grinaway, ., J. D. Chodera. 2015. Ensembler:
enabling high-throughput molecular simulations at the superfamily
scale. bioRxiv, 018036.

28. Klein, C. 2014. mBuild: a component-based molecule builder tool that
relies on equivalence relations for component composition. GitHub.
http://imodels.github.io/mbuild/.

29. Haque, I. S., K. A. Beauchamp, and V. S. Pande. 2014. A fast 3 � N
matrix multiply routine for calculation of protein RMSD. bioRxiv,
008631.

30. Theobald, D. L. 2005. Rapid calculation of RMSDs using a quaternion-
based characteristic polynomial. Acta Crystallogr. A. 61:478–480.

31. Kabsch, W., and C. Sander. 1983. Dictionary of protein secondary
structure: pattern recognition of hydrogen-bonded and geometrical
features. Biopolymers. 22:2577–2637.

32. Shrake, A., and J. A. Rupley. 1973. Environment and exposure to sol-
vent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79:351–371.
Biophysical Journal 109(8) 1528–1532
33. Baker, E. N., and R. E. Hubbard. 1984. Hydrogen bonding in globular
proteins. Prog. Biophys. Mol. Biol. 44:97–179.

34. Vögeli, B., J. Ying, ., A. Bax. 2007. Limits on variations in protein
backbone dynamics from precise measurements of scalar couplings.
J. Am. Chem. Soc. 129:9377–9385.

35. Allen, M. P., and D. J. Tildesley. 1989. Liquid crystals. In Computer
Simulation of Liquids. Clarendon Press, Oxford, UK, pp. 300–305.

36. Li, H., K.-S. Leung, ., M.-H. Wong. 2014. iview: an interactive
WebGL visualizer for protein-ligand complex. BMC Bioinformatics.
15:56.

37. Wilson, G., D. A. Aruliah, ., P. Wilson. 2014. Best practices for sci-
entific computing. PLoS Biol. 12:e1001745.

38. Gousios, G., M. Pinzger, and A. van Deursen. 2014. An exploratory
study of the pull-based software development model. In Proceedings
of the 36th International Conference on Software Engineering, ICSE
2014. Association for Computing Machinery (ACM), New York, pp.
345–355.

39. Burges, C. 2010. Dimension Reduction: A Guided Tour, Foundations
and Trends in Machine Learning. Now Publishers, Boston, MA.

http://refhub.elsevier.com/S0006-3495(15)00826-7/sref26
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref26
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref26
http://imodels.github.io/mbuild/
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref30
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref30
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref31
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref31
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref31
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref32
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref32
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref33
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref33
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref34
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref34
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref34
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref35
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref35
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref36
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref36
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref36
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref37
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref37
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref38
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref38
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref38
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref38
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref38
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref39
http://refhub.elsevier.com/S0006-3495(15)00826-7/sref39

	MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories
	Introduction
	Materials and Methods
	Capabilities and implementation

	Results and Discussion
	Conclusions
	Software Availability

	Acknowledgments
	References


